Although SARS-CoV-2 induces mucin hypersecretion in the respiratory tract, hyposalivation/xerostomia has been reported by COVID-19 patients. We evaluate the submandibular gland (SMGs) pathogenesis in SARS-CoV-2-infected K18-hACE2 mice, focusing on the impact of infection on the mucin production and structural integrity of acini, ductal system, myoepithelial cells (MECs) and telocytes. The spike protein, the nucleocapsid protein, hACE2, actin, EGF, TNF-α and IL-1β were detected by immunofluorescence, and the and expression was evaluated. In the infected animals, significant acinar hypertrophy was observed in contrast to ductal atrophy. Nucleocapsid proteins and/or viral particles were detected in the SMG cells, mainly in the nuclear membrane-derived vesicles, confirming the nuclear role in the viral formation. The acinar cells showed intense TNF-α and IL-1β immunoexpression, and the EGF-EGFR signaling increased, together with upregulation. This finding explains mucin hypersecretion and acinar hypertrophy, which compress the ducts. Dying MECs and actin reduction were also observed, indicating failure of contraction and acinar support, favoring acinar hypertrophy. Viral assembly was found in the dying telocytes, pointing to these intercommunicating cells as viral transmitters in SMGs. Therefore, EGF-EGFR-induced mucin hypersecretion was triggered by SARS-CoV-2 in acinar cells, likely mediated by cytokines. The damage to telocytes and MECs may have favored the acinar hypertrophy, leading to ductal obstruction, explaining xerostomia in COVID-19 patients. Thus, acinar cells, telocytes and MECs may be viral targets, which favor replication and cell-to-cell viral transmission in the SMG, corroborating the high viral load in saliva of infected individuals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11241347 | PMC |
http://dx.doi.org/10.3390/ijms25136820 | DOI Listing |
iScience
December 2024
Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA.
Increased blood amino acid levels (hyperaminoacidemia) stimulate pancreas expansion by unclear mechanisms. Here, by genetic and pharmacological disruption of glucagon receptor (GCGR) in mice and zebrafish, we found that the ensuing hyperaminoacidemia promotes pancreatic acinar cell proliferation and cell hypertrophy, which can be mitigated by a low protein diet in mice. In addition to mammalian target of rapamycin complex 1 (mTORC1) signaling, acinar cell proliferation required , the most highly expressed amino acid transporter gene in both species.
View Article and Find Full Text PDFInt J Mol Sci
June 2024
Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Dental School-São Paulo State University (UNESP), Araraquara 14801-903, Brazil.
Although SARS-CoV-2 induces mucin hypersecretion in the respiratory tract, hyposalivation/xerostomia has been reported by COVID-19 patients. We evaluate the submandibular gland (SMGs) pathogenesis in SARS-CoV-2-infected K18-hACE2 mice, focusing on the impact of infection on the mucin production and structural integrity of acini, ductal system, myoepithelial cells (MECs) and telocytes. The spike protein, the nucleocapsid protein, hACE2, actin, EGF, TNF-α and IL-1β were detected by immunofluorescence, and the and expression was evaluated.
View Article and Find Full Text PDFBMC Cancer
December 2022
Faculty of Health Sciences, University of Lomé, BP 1515, Lomé, Togo.
Background: Prostate cancer is a public health problem and increasingly diagnosed in men under 50 years of age. This cancer occurs much more in subjects of advanced age, generally over sixty. The aim of the study was to describe the epidemiological, clinical and histopathological aspects of prostate cancer in men under the age of 50 in Togo.
View Article and Find Full Text PDFMol Biol Rep
May 2021
Nutrition Research Division, Bureau of Nutritional Sciences, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada.
Our previous study showed that soy milks could contain high levels of active soybean trypsin inhibitors (SBTI) if they were not properly processed. This study investigated the effects of consuming active SBTI on pancreatic weights, histology, trypsinogen production and expression of STAT3, receptors for androgen (AR) and estrogen (ER) in pancreas, liver and uterus of rats. Weanling Sprague-Dawley rats were randomly divided into 3 groups (8 females and 8 males/group) and fed diets containing either 20% casein protein (Casein) or 20% soy protein (SP) in the presence of high (1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!