In the Qaidam Basin, Soil Nutrients Directly or Indirectly Affect Desert Ecosystem Stability under Drought Stress through Plant Nutrients.

Plants (Basel)

Hebei Key Laboratory of Environmental Change and Ecological Construction, Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, School of Geographical Sciences, Hebei Normal University, Shijiazhuang 050024, China.

Published: July 2024

The low nutrient content of soil in desert ecosystems results in unique physiological and ecological characteristics of plants under long-term water and nutrient stress, which is the basis for the productivity and stability maintenance of the desert ecosystem. However, the relationship between the soil and the plant nutrient elements in the desert ecosystem and its mechanism for maintaining ecosystem stability is still unclear. In this study, 35 sampling sites were established in an area with typical desert vegetation in the Qaidam Basin, based on a drought gradient. A total of 90 soil samples and 100 plant samples were collected, and the soil's physico-chemical properties, as well as the nutrient elements in the plant leaves, were measured. Regression analysis, redundancy analysis (RDA), the Theil-Sen Median and Mann-Kendall methods, the structural equation model (SEM), and other methods were employed to analyze the distribution characteristics of the soil and plant nutrient elements along the drought gradient and the relationship between the soil and leaf nutrient elements and its impact on ecosystem stability. The results provided the following conclusions: Compared with the nutrient elements in plant leaves, the soil's nutrient elements had a more obvious regularity of distribution along the drought gradient. A strong correlation was observed between the soil and leaf nutrient elements, with soil organic carbon and alkali-hydrolyzed nitrogen identified as important factors influencing the leaf nutrient content. The SEM showed that the soil's organic carbon had a positive effect on ecosystem stability by influencing the leaf carbon, while the soil's available phosphorus and the mean annual temperature had a direct positive effect on stability, and the soil's total nitrogen had a negative effect on stability. In general, the soil nutrient content was high in areas with a low mean annual temperature and high precipitation, and the ecosystem stability in the area distribution of typical desert vegetation in the Qaidam Basin was low. These findings reveal that soil nutrients affect the stability of desert ecosystems directly or indirectly through plant nutrients in the Qaidam Basin, which is crucial for maintaining the stability of desert ecosystems with the background of climate change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244565PMC
http://dx.doi.org/10.3390/plants13131849DOI Listing

Publication Analysis

Top Keywords

nutrient elements
28
ecosystem stability
20
qaidam basin
16
desert ecosystem
12
nutrient content
12
desert ecosystems
12
drought gradient
12
leaf nutrient
12
nutrient
11
soil
10

Similar Publications

Water quality assessment of Johor River Basin, Malaysia, using multivariate analysis and spatial interpolation method.

Environ Sci Pollut Res Int

January 2025

Center for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable Environment (RISE), Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.

In the Johor River Basin, a comprehensive analysis was conducted on 24 water environmental parameters across 33 sampling sites over 3 years, encompassing both dry and wet seasons. A total of 396 water samples were collected and analyzed to calculate the Water Quality Index (WQI). To further assess water quality and pinpoint potential pollution sources, multivariate techniques such as principal component analysis (PCA) and cluster analysis (CA), alongside spatial analysis using inverse distance weighted (IDW) interpolation, were employed.

View Article and Find Full Text PDF

To investigate the effects of row ratio configurations on intercropping advantages and related rhizosphere microbial communities, a field experiment involving five treatments of different rows of broomcorn millet, i.e., P1M1 (1 row of broomcorn millet intercropped with 1 row of alfalfa), P2M3, P1M2, P1M3 and broomcorn millet alone (SP), was conducted on the Loess Plateau of China.

View Article and Find Full Text PDF

Physiological mechanisms of Carya illinoensis tolerance to manganese stress.

Plant Physiol Biochem

December 2024

State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China. Electronic address:

Manganese (Mn) is an essential element for plant growth but can be toxic at high levels. Pecan (Carya illinoensis), an important nut-producing species, has been observed to exhibit tolerance to high Mn levels. In this study, pecan seedlings were exposed to a nutrient solution containing either 2 μM (control) or 1000 μM (excess) MnSO to investigate the physiological mechanisms.

View Article and Find Full Text PDF

This review provides an analysis of the current literature on the health and nutrition of blood donors, examining key aspects that affect the quality of donated blood and the well-being of donors. The review discusses effective iron absorption facilitated by key nutrients and presents evidence on the importance of a balanced diet rich in essential nutrients, such as vitamin B12 and folic acid. The review examines the differences in iron levels between men and women and highlights the role of sex hormones in regulating iron metabolism.

View Article and Find Full Text PDF

The elemental dynamics and interactions within deadwood profoundly influence carbon sequestration and nutrient cycling in forest ecosystems. Recent studies have investigated macronutrient cycling during deadwood decay of specific plants, yet the dynamics and interactions of micronutrients, trace elements, and the elementome across species and decay stages remain unexplored. Here, we investigated the elementome and their coupling relationships across five decay stages of downed deadwood (DDW) from four dominant species (Hippophae rhamnoides, Populus purdomii, Abies fabri, and Picea brachytyla) along the Hailuogou Glacier primary successional chronosequence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!