This work presents a summary of cytogenetic data, including new information, on several species within the tribe Neottieae, with an update of the karyotype for 23 species belonging to the genera , , , and (including ). Each of these four genera also presents distinctive chromosomal features, such as bimodal karyotypes. Our research includes insights into the distribution of constitutive heterochromatin, measured using C-banding and, in some cases, specific fluorochromes for the detection of A-T- and G-C-rich DNA. In the group, it is noteworthy that when using the Giemsa banding technique, certain species (e.g., , ) with a chromosome number of 2n = 38 were observed to exhibit a conspicuous wide band of constitutive heterochromatin on the long arm of the third pair in a subcentromeric position, resembling what has been observed in . These differences also have the potential to contribute to the diversification of these species. Based on the karyological results obtained, a hypothesis regarding the origin of certain species within the group is proposed. Additionally, karyological analyses conducted on a specimen of revealed chromosome counts ranging from 36 to 40. Somatic metaphases exhibited evident structural alterations in certain chromosomes, showing rearrangements probably caused by translocation phenomena. Based on the data obtained from the species within the studied genera, it is conceivable that variations in chromosomes, both structurally and in the distribution of constitutive heterochromatin, exert a significant influence on the evolution of the karyotype. Moreover, in many entities belonging to the Neottieae tribe, these processes may also contribute to the diversification of the phenotype in some instances.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11243519 | PMC |
http://dx.doi.org/10.3390/plants13131776 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037.
is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside and (. CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML) and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways, respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing derepression of silenced elements in heterochromatin.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
The assembly of repressive heterochromatin in eukaryotic genomes is crucial for silencing lineage-inappropriate genes and repetitive DNA elements. Paradoxically, transcription of repetitive elements within constitutive heterochromatin domains is required for RNA-based mechanisms, such as the RNAi pathway, to target heterochromatin assembly proteins. However, the mechanism by which heterochromatic repeats are transcribed has been unclear.
View Article and Find Full Text PDFVavilovskii Zhurnal Genet Selektsii
November 2024
Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
Galliformes and Anseriformes are two branches of the Galloanserae group, basal to other Neognathae. In contrast to Galliformes, Anseriformes have not been thoroughly researched by cytogenetic methods. This report is focused on representatives of Anseriformes and the evolution of their chromosome sets.
View Article and Find Full Text PDFBMC Genomics
December 2024
Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA.
Background: Organization of the eukaryotic genome is essential for proper function, including gene expression. In metazoans, chromatin loops and Topologically Associated Domains (TADs) organize genes into transcription factories, while chromosomes occupy nuclear territories in which silent heterochromatin is compartmentalized at the nuclear periphery and active euchromatin localizes to the nucleus center. A similar hierarchical organization occurs in the fungus Neurospora crassa where its seven chromosomes form a Rabl conformation typified by heterochromatic centromeres and telomeres independently clustering at the nuclear membrane, while interspersed heterochromatic loci aggregate across Megabases of linear genomic distance to loop chromatin in TAD-like structures.
View Article and Find Full Text PDFEMBO Rep
November 2024
Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada.
A defining feature of constitutive heterochromatin compartments is the heterochromatin protein-1 (HP1) family, whose members display fast internal mobility and rapid exchange with the surrounding nucleoplasm. Here, we describe a paradoxical state for the lysine methyltransferase KMT5C characterized by rapid internal diffusion but minimal nucleoplasmic exchange. This retentive behavior is conferred by sparse sequence features that constitute two modules tethered by an intrinsically disordered linker.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!