Biochar is regarded as a soil improvement material possessing superior physical and chemical properties that can effectively enhance plant growth. However, there exists a paucity of research examining the efficacy of biochar in supplanting traditional materials and its subsequent impact on the growth of , which is currently domesticated as fruit ornamentals. In this study, the mechanism of biochar's effect on was analyzed by controlled experiments. For 180 days, their growth and development were meticulously assessed under different treatments through the measurement of various indices. Compared with the references, the addition of biochar led to an average increase in soil nutrient content, including a 14.1% rise in total nitrogen, a 564.1% increase in total phosphorus, and a 63.2% boost in total potassium. Furthermore, it improved the physical and chemical properties of the soil by reducing soil bulk density by 6.2%, increasing total porosity by 6.33%, and enhancing pore water by 7.35%, while decreasing aeration porosity by 1.11%. The growth and development of were better when the appending ratio of biochar was in the range of 30% to 50%, with the root parameters, such as root length, root surface area, and root volume, 48.90%, 62.00%, and 24.04% higher to reference. At the same time, the biomass accumulation of roots in the best group with adding biochar also increased significantly (55.80%). The addition of biochar resulted in a significant improvement in the content of chlorophyll a and chlorophyll b (1.947 mg g) and the net photosynthetic rate (5.6003 µmol m s). This study's findings underpinned the addition of biochar in soil improvement and plant response. Therefore, biochar can favor the cultivation and industrial application of in the future, leading to an efficient and environmentally friendly industrial development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11243174 | PMC |
http://dx.doi.org/10.3390/plants13131736 | DOI Listing |
Sci Rep
December 2024
Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
Climate change has caused many challenges to soil ecosystems, including soil salinity. Consequently, many strategies are advised to mitigate this issue. In this context, biochar is acknowledged as a useful addition that can alleviate the detrimental impacts of salt stress on plants.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Chemical and Biochemical Engineering Department, University of Western Ontario, London, ON, N6A 5B9, Canada; Civil and Environmental Engineering Department, University of Western Ontario, London, ON, N6A 5B9, Canada. Electronic address:
The convergence of sustainability and climate change has catalyzed the pursuit of inventive strategies for waste management and sustainable energy production. Hereby, we explored the effect of coupling biochar addition and thermal pretreatment in anaerobic mono-digestion and co-digestion of thermally pretreated thickened waste activated sludge (PTWAS) with food waste (FW). Six semi-continuous lab-scale digesters were operated for 161 days at various organic loading rates (OLR of 2, 3, 4 and 8 kgCOD/m/day) with and without biochar (BC) addition.
View Article and Find Full Text PDFFront Biosci (Elite Ed)
November 2024
Department of Life Sciences, GITAM School of Science, Gandhi Institute of Technology and Management, 530045 Visakhapatnam, Andhra Pradesh, India.
Background: Amalgamation of metal-tolerant plant growth promoting rhizobacteria (PGPR) with biochar is a promising direction for the development of chemical-free biofertilizers that can mitigate environmental risks, enhance crop productivity and their biological value. The main objective of the work includes the evaluation of the influence of prepared bacterial biofertilizer (BF) on biometric growth parameters as well as physiological and biochemical characteristics of rapeseed ( L.) at copper action.
View Article and Find Full Text PDFChemosphere
December 2024
Shenzhen Automotive Research Institute, Beijing Institute of Technology, Shenzhen, 518118, Guangdong, PR China.
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/policies/article-withdrawal).
View Article and Find Full Text PDFSci Rep
December 2024
College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, 010019, China.
Hydrothermal biochar has demonstrated potential in enhancing crop growth by improving soil properties and microbial activity; however, its effectiveness varies with application rate, with excessive amounts potentially inhibiting plant growth. This study employed a pot experiment approach to compare varying application rates of hydrothermal biochar (ranging from 0 to 50 t/ha) and to analyze its effects on alfalfa biomass, photosynthetic efficiency, soil nutrient content, and microbial community composition. Biochar application increased alfalfa dry weight by 12.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!