AI Article Synopsis

  • - This study introduces a new method, FFR2D, for quickly and accurately calculating fractional flow reserve using routine 2D coronary angiograms, comparing its effectiveness to the traditional pressure wire measurement in assessing coronary artery stenosis.
  • - Conducted with 88 patients, the results showed that FFR2D had a strong correlation with the invasive FFR, achieving a diagnostic accuracy of 90.9%, with key metrics including 85.7% sensitivity and 93.3% specificity for identifying critical artery blockages.
  • - FFR2D outperformed the standard 50% diameter stenosis measurement in predictive ability, demonstrating a significantly higher area under the ROC curve, indicating its potential as a more reliable tool

Article Abstract

To present a novel pipeline for rapid and precise computation of fractional flow reserve from an analysis of routine two-dimensional coronary angiograms based on fluid mechanics equations (FFR2D). This was a pilot analytical study that was designed to assess the diagnostic performance of FFR2D versus the gold standard of FFR (threshold ≤ 0.80) measured with a pressure wire for the physiological assessment of intermediate coronary artery stenoses. In a single academic center, consecutive patients referred for diagnostic coronary angiography and potential revascularization between 1 September 2020 and 1 September 2022 were screened for eligibility. Routine two-dimensional angiograms at optimal viewing angles with minimal overlap and/or foreshortening were segmented semi-automatically to derive the vascular geometry of intermediate coronary lesions, and nonlinear pressure-flow mathematical relationships were applied to compute FFR2D. Some 88 consecutive patients with a single intermediate coronary artery lesion were analyzed (LAD n = 74, RCA n = 9 and LCX n = 5; percent diameter stenosis of 45.7 ± 11.0%). The computed FFR2D was on average 0.821 ± 0.048 and correlated well with invasive FFR (r = 0.68, < 0.001). There was very good agreement between FFR2D and invasive-wire FFR with minimal measurement bias (mean difference: 0.000 ± 0.048). The overall accuracy of FFR2D for diagnosing a critical epicardial artery stenosis was 90.9% (80 cases classified correctly out of 88 in total). FFR2D identified 24 true positives, 56 true negatives, 4 false positives, and 4 false negatives and predicted FFR ≤ 0.80 with a sensitivity of 85.7%, specificity of 93.3%, positive likelihood ratio of 13.0, and negative likelihood ratio of 0.15. FFR2D had a significantly better discriminatory capacity (area under the ROC curve: 0.95 [95% CI: 0.91-0.99]) compared to 50%DS on 2D-QCA (area under the ROC curve: 0.70 [95% CI: 0.59-0.82]; = 0.0001) in predicting wire FFR ≤ 0.80. The median time of image analysis was 2 min and the median time of computation of the FFR2D results was 0.1 s. FFR2D may rapidly derive a precise image-based metric of fractional flow reserve with high diagnostic accuracy based on a single two-dimensional coronary angiogram.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11242488PMC
http://dx.doi.org/10.3390/jcm13133831DOI Listing

Publication Analysis

Top Keywords

fractional flow
12
flow reserve
12
routine two-dimensional
12
two-dimensional coronary
12
≤ 080
12
intermediate coronary
12
ffr2d
11
rapid precise
8
precise computation
8
computation fractional
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!