Dihydromyricetin (DMY) has been encapsulated in delivery systems to address the solubility limitations of DMY in water and improve its bioavailability. Air-assisted electrospinning has been used as a novel technology to load DMY. To evaluate the impact of adding DMY to dextran/zein nanofibers and understand the effects of the Maillard reaction (MR) on the physical and functional properties of DMY-loaded nanofibers, dextran/zein/xylose nanofibers with 0%, 1%, 2%, 3%, and 4% DMY were fabricated, followed by MR crosslinking. Scanning electron microscopy (SEM) observations indicated that the addition of DMY and the MR did not affect the morphology of the nanofibers. X-ray diffraction (XRD) results indicated amorphous dispersion of DMY within the nanofibers and a decreased crystalline structure within the nanofibers following the MR, which might improve their molecular flexibility. The nanofibrous film formed after the MR exhibited both increased tensile strength and elastic modulus due to hydrogen bonding within the nanofibers and increased elongation at break attributed to the increased amorphization of the structure after crosslinking. The nanofibers were also found to exhibit improved heat stability after the MR. The antioxidant activity of the nanofibers indicated a dose-dependent effect of DMY on radical scavenging activity and reducing power. The maintenance of antioxidant activity of the nanofibers after the MR suggested heat stability of DMY during heat treatment. Overall, dextran/zein nanofibers with various DMY contents exhibited tunable physical properties and effective antioxidant activities, indicating that dextran/zein nanofibers offer a successful DMY delivery system, which can be further applied as an active package.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11243030PMC
http://dx.doi.org/10.3390/molecules29133136DOI Listing

Publication Analysis

Top Keywords

nanofibers
13
dextran/zein nanofibers
12
dmy
11
air-assisted electrospinning
8
dextran/zein/xylose nanofibers
8
effects maillard
8
maillard reaction
8
nanofibers dmy
8
heat stability
8
antioxidant activity
8

Similar Publications

Due to people's environmental awareness and the continuous improvement of the living environment requirements, the pollution problem of fine particles has attracted widespread attention and great importance. Therefore, the development of new green and environmentally friendly air filtration materials with high efficiency and low resistance is ongoing. In this work, eco-friendly zein/ethylcellulose blende nanofiber membranes with different fiber morphologies, diameter sizes, and hydrophobicity are prepared by electrospinning technology, and their performance in the field of air filtration and purification is investigated, to make them highly efficient for the adsorption of small pollutants of various polarities.

View Article and Find Full Text PDF

Nanofiber Applications From Hijiki Macroalgae: Antibacterial and Cytotoxicity Properties in Biocompatible Polymers.

Biopolymers

January 2025

Department of Environmental Protection Technology, Kazım Karabekir Vocational School, Karamanoğlu Mehmetbey University, Karaman, Turkey.

One of the current biotechnological applications is nanofiber applications made from algae using the electrospinning technique. Nanofibers containing poly-caprolactone (PCL) extracted from the brown seaweed Hijiki (Sargassum fusiforme) were prepared using electrospinning technique. Water extraction was performed to preserve the integrity of Hijiki components, ensuring their efficacy in subsequent electrospinning and characterization.

View Article and Find Full Text PDF

Epilepsy is one of the oldest neurological disorders discovered by mankind. This condition is firmly coupled with unprovoked seizures stimulated by irrepressible neuroelectrical blasts. Orally taken valproate family has been employed for prophylactic management; however, oral administration is not applicable for critical scenarios, thus calling for medication routes fulfilling necessities of immediate innervation.

View Article and Find Full Text PDF

Osteoarthritis (OA) is the most common disease in aging joints and has characteristics of cartilage destruction and inflammation. It is currently considered a metabolic disease, and the CH25H-CYP7B1-RORα axis of cholesterol metabolism in chondrocytes plays a crucial catabolic regulatory role in its pathogenesis. Targeting of this axis in chondrocytes may provide a therapeutic approach for OA treatment.

View Article and Find Full Text PDF

Wireless wearable multifunctional sensor based on carboxylated cellulose nanofibers/silver nanowires for ultra-sensitive, fast humidity response and body temperature monitoring.

Int J Biol Macromol

December 2024

Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China. Electronic address:

Humidity and temperature sensors are considered as hotspots for the next generation of wearable multifunctional electronics. However, it is still a notable challenge to realize multifunctional sensors with high-performance humidity response, excellent mechanical properties, and accurate temperature monitoring capability. In this work, a hydrogen-bond cross-linked hybrid network was constructed between carboxystyrene-butadiene rubber (XSBR) and hydrophilic carboxylated cellulose nanofibers (CNF) noncovalently modified silver nanowires (AgNWs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!