Sulfurized polyacrylonitrile (SPAN) is a promising cathode material for lithium-sulfur batteries owing to its reversible solid-solid conversion for high-energy-density batteries. However, the sluggish reaction kinetics of SPAN cathodes significantly limit their output capacity, especially at high cycling rates. Herein, a CNT-interpenetrating hierarchically porous SPAN electrode is developed by a simple phase-separation method. Flexible self-supporting SPAN cathodes with fast electron/ion pathways are synthesized without additional binders, and exceptional high-rate cycling performances are obtained even with substantial sulfur loading. For batteries assembled with this special cathode, an impressive initial discharge capacity of 1090 mAh g and a retained capacity of 800 mAh g are obtained after 1000 cycles at 1 C with a sulfur loading of 1.5 mg cm. Furthermore, by incorporating VO anchored carbon fiber as an interlayer with adsorption and catalysis function, a high initial capacity of 614.8 mAh g and a notable sustained capacity of 500 mAh g after 500 cycles at 5 C are achieved, with an ultralow decay rate of 0.037% per cycle with a sulfur loading of 1.5 mg cm. The feasible construction of flexible SPAN electrodes with enhanced cycling performance enlists the current processing as a promising strategy for novel high-rate lithium-sulfur batteries and other emerging battery electrodes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11242976 | PMC |
http://dx.doi.org/10.3390/nano14131155 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Wenzhou University, College of Chemistry and Materials Engineering, Chashan University Town, 325035, Wenzhou, CHINA.
Small
December 2024
College of Material Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
Lithium-sulfur batteries (LSBs) face challenges from the shuttle effect of lithium polysulfides (LiPSs) and slow redox kinetics. In this study, a NiCo-Doped 3D Ordered Mesoporous Carbon (NiCo-3DOMC) composite material is synthesized using a gel-crystalline template and sol-gel method to modify polypropylene separators in LSBs. Density Functional Theory calculations and experiment results demonstrate that under a magnetic field, the NiCo-3DOMC enhances adsorption and catalyzes the conversion of LiPSs, effectively mitigating the shuttle effect and boosting redox kinetics.
View Article and Find Full Text PDFiScience
December 2024
Institute of Environment and Sustainable Development (IESD), Banaras Hindu University, Varanasi, UP, India.
Arsenic (As) is a non-essential carcinogenic metalloid and an issue of concern for rice crops. This study investigated the effects of sulfur-loaded tea waste biochar (TWB) due to modification with sodium sulfide (SSTWB) or thiourea (TUTWB) on As stress and accumulation in rice plants. The results showed that sulfur-modified TWB improved plant morphology compared to plants grown in As-contaminated soil alone.
View Article and Find Full Text PDFChemistry
December 2024
Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, CHINA.
Sulfur-rich copolymers have gained a great deal of attention as promising cathode materials in Li-S batteries due to their low cost and naturally uniform sulfur dispersion. However, the poor electrical conductivity and shuttle effect cause rapid capacity decay and low sulfur utilization especially under high sulfur loading and low electrolyte/sulfur ratio. Herein, the Fe1-xS/C dispersed and Se-containing sulfur-rich polymer (FSP) was synthesized by one-pot reaction of ferrocene, trithioiynuric acid with SexSy.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Henan University, School of Materials Science and Engineering, CHINA.
Sluggish reaction kinetics of sulfur species fundamentally trigger the incomplete conversion of S8↔Li2S and restricted lifespan of lithium-sulfur batteries, especially under high sulfur loading and/or low electrolyte/sulfur (E/S) ratio. Introducing redox mediators (RMs) is an effective strategy to boost the battery reaction kinetics, yet their multifunctionality and shuttle inhibition are still not available. Here, a unique ethyl viologen (EtV²⁺) RM with two highly reversible redox couples (EtV²⁺/EtV⁺, EtV⁺/EtV0) is demonstrated to well match the redox chemistry of sulfur species, in terms of accelerating the electron transfer in S8 reduction, Li2S nucleation and the Li2S oxidation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!