Quantum Graphene Asymmetric Devices for Harvesting Electromagnetic Energy.

Nanomaterials (Basel)

Physics Faculty, University of Bucharest, P.O. Box MG-11, 077125 Bucharest, Romania.

Published: June 2024

We present here the fabrication at the wafer level and the electrical performance of two types of graphene diodes: ballistic trapezoidal-shaped graphene diodes and lateral tunneling graphene diodes. In the case of the ballistic trapezoidal-shaped graphene diode, we observe a large DC current of 200 µA at a DC bias voltage of ±2 V and a large voltage responsivity of 2000 /, while in the case of the lateral tunneling graphene diodes, we obtain a DC current of 1.5 mA at a DC bias voltage of ±2 V, with a voltage responsivity of 3000 . An extended analysis of the defects produced during the fabrication process and their influences on the graphene diode performance is also presented.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11243634PMC
http://dx.doi.org/10.3390/nano14131114DOI Listing

Publication Analysis

Top Keywords

graphene diodes
16
ballistic trapezoidal-shaped
8
trapezoidal-shaped graphene
8
lateral tunneling
8
tunneling graphene
8
graphene diode
8
bias voltage
8
voltage ±2
8
voltage responsivity
8
graphene
6

Similar Publications

Non-equilibrium molecular dynamics (NEMD) simulations reveal the existence of a spontaneous heat current (SHC) in the absence of a temperature gradient and demonstrate ultra-high thermal rectification in asymmetric trapezoid-shaped graphene. These unique properties have potential applications in power generation and thermal circuits, functioning as thermal diodes. Our findings also show the presence of negative and zero thermal conductivity in this system.

View Article and Find Full Text PDF

Optoelectronic devices combining single-layer graphene (SLG) and colloidal semiconducting nanocrystal (NC) heterojunctions have recently gained significant attention as efficient hybrid photodetectors. While most research has concentrated on systems using heavy metal-based semiconductor NCs, there is a need for further exploration of environmentally friendly nanomaterials, such as CuS. Chemical ligands play a crucial role in these hybrid photodetectors, as they enable charge transfer between the NCs and SLG.

View Article and Find Full Text PDF

Pressure-Induced Assembly of Organic Phase-Change Materials Hybridized with Expanded Graphite and Carbon Nanotubes for Direct Solar Thermal Harvesting and Thermoelectric Conversion.

Nanomaterials (Basel)

December 2024

State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China.

Direct harvesting of abundant solar thermal energy within organic phase-change materials (PCMs) has emerged as a promising way to overcome the intermittency of renewable solar energy and pursue high-efficiency heating-related applications. Organic PCMs, however, generally suffer from several common shortcomings including melting-induced leakage, poor solar absorption, and low thermal conductivity. Compounding organic PCMs with single-component carbon materials faces the difficulty in achieving optimized comprehensive performance enhancement.

View Article and Find Full Text PDF

Strongly Anchored Dion-Jacobson Perovskite for Efficient Blue Light-Emitting Diodes.

Nano Lett

January 2025

State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, P. R. China.

Dion-Jacobson (DJ) perovskites are promising alternatives for Ruddlesden-Popper (RP) perovskites to fabricate blue perovskite light-emitting diodes (PeLEDs) due to their favorable structural and charge properties. However, the relatively weak hydrogen bond between the bridging diammonium group and perovskite poses huge challenges for regulating crystallization and defect density, leading to an undesirable film quality and device performance. Herein, we report the successful optimization of DJ perovskite films by introducing a new type of cesium octafluoroadipate (CsOFAA) precursor, which could strongly anchor the perovskite through coordination bonds and halogen-halogen bonds.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses how graphene-based van der Waals heterostructures can manipulate spin-orbit coupling (SOC) through proximity effects, emphasizing the importance of understanding features near the Dirac point and the introduction of a unique "radial Rashba SOC."
  • It presents a method to differentiate between conventional Rashba SOC and radial Rashba SOC, utilizing large-scale magnetotransport calculations like transverse magnetic focusing and Dyakonov-Perel spin relaxation to reveal distinct experimental signatures.
  • Additionally, the study proposes a way to estimate the Rashba angle using magnetic field responses and explores the effects of Dresselhaus SOC, hinting at potential applications in radial superconducting diodes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!