A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Redox Stability Optimization in Anode-Supported Solid Oxide Fuel Cells. | LitMetric

Redox Stability Optimization in Anode-Supported Solid Oxide Fuel Cells.

Materials (Basel)

Department of Engineering Mechanics, College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266555, China.

Published: July 2024

For Ni-YSZ anode-supported solid oxide fuel cells (SOFCs), the main drawback is that they are susceptible to reducing and oxidizing atmosphere changes because of the Ni/NiO volume variation. The anode expansion upon oxidation can cause significant stresses in the cell, eventually leading to failure. In order to improve the redox stability, an analytical model is developed to study the effect of anode structure on redox stability. Compared with the SOFC without AFL, the tensile stresses in the electrolyte and cathode of SOFC with an anode functional layer (AFL) after anode oxidation are increased by 27.07% and 20.77%, respectively. The thickness of the anode structure has a great influence on the structure's stability. Therefore, the influence of anode thickness and AFL thickness on the stress in these two structures after oxidation is also discussed. The thickness of the anode substrate plays a more important role in the SOFC without AFL than in the SOFC with AFL. By increasing the thickness of the anode substrate, the stresses in the electrolyte and cathode decrease. This method provides a theoretical basis for the design of a reliable SOFC in the redox condition and will be more reliable with more experimental proofs in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11243402PMC
http://dx.doi.org/10.3390/ma17133257DOI Listing

Publication Analysis

Top Keywords

redox stability
12
sofc afl
12
thickness anode
12
anode-supported solid
8
solid oxide
8
oxide fuel
8
fuel cells
8
anode
8
anode structure
8
stresses electrolyte
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!