This article introduces an eco-friendly method for the reclamation of carbon fiber-reinforced polymers (CFRP). The research project involved numerous experiments using microwave-assisted pyrolysis (MAP) to explore a range of factors, such as the inert gas flow, the power level, the On/Off frequency of rotation, and the reaction duration. To design the experiments, the three-level Box-Behnken optimization tool was employed. To determine the individual and combined effects of the input parameters on the thermal decomposition of the resin, the data were analyzed using least-squares variance adjustment. The results demonstrate that the models developed in this study were successful in predicting the direct parameters of influence in the microwave-assisted decomposition of CFRPs. An optimal set of operating conditions was found to be the maximum nitrogen flow (2.9 L/min) and the maximum operating experimental power (914 W). In addition, it was observed that the reactor vessel's On/Off rotation frequency and that increasing the reaction time beyond 6 min had no significant influence on the resin elimination percentage when compared to the two other parameters, i.e., power and carrier gas flow rate. Consequently, the above-mentioned conditions resulted in a maximum resin elimination percentage of 79.6%. Following successful MAP, various post-pyrolysis treatments were employed. These included mechanical abrasion using quartz sand, chemical dissolution, thermal oxidative treatment using a microwave (MW) applicator and thermal oxidative treatment in a conventional furnace. Among these post-treatment techniques, thermal oxidation and chemical dissolution were found to be the most efficient methods, eliminating 100% of the carbon black content on the surface of the recovered carbon fibers. Finally, SEM evaluations and XPS analysis were conducted to compare the surface morphology and elementary constitution of the recovered carbon fibers with virgin carbon fibers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11242686 | PMC |
http://dx.doi.org/10.3390/ma17133256 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!