In this article, an attempt was made to join DP600 steel and Ti6Al4V titanium alloy sheets by resistance spot-welding (RSW) using an interlayer in the form of Cu and Au layers fabricated through the cold-spraying process. The welded joints obtained by RSW without an interlayer were also considered. The influence of Cu and Au as an interlayer on the resulting microstructure as well as mechanical properties (shear force and microhardness) of the joints were determined. A typical type of failure of Ti6Al4V/DP600 joints produced without the use of an interlayer is brittle fracture. The microstructure of the resulting joint consisted mainly of the intermetallic phases FeTi and FeTi. The microstructure of the Ti6Al4V/Au/DP600 joint contained the intermetallic phases TiAu, TiAu, and TiAu4. The intermetallic phases TiCu and FeCu were found in the microstructure of the Ti6Al4V/Cu/DP600 joint. The maximum tensile/shear stress was 109.46 MPa, which is more than three times higher than for a welded joint fabricated without the use of Cu or Au interlayers. It has been observed that some alloying elements, such as Fe, can lower the martensitic transformation temperature, and some, such as Au, can increase the martensitic transformation temperature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11243019PMC
http://dx.doi.org/10.3390/ma17133251DOI Listing

Publication Analysis

Top Keywords

intermetallic phases
12
resistance spot-welding
8
dp600 steel
8
rsw interlayer
8
martensitic transformation
8
transformation temperature
8
analysis microstructure
4
microstructure mechanical
4
mechanical performance
4
performance resistance
4

Similar Publications

Strong, ductile, and hierarchical hetero-lamellar-structured alloys through microstructural inheritance and refinement.

Proc Natl Acad Sci U S A

January 2025

Department of Materials Science and Engineering, Hong Kong Institute for Advanced Study, City University of Hong Kong, Hong Kong, China.

The strength-ductility trade-off exists ubiquitously, especially in brittle intermetallic-containing multiple principal element alloys (MPEAs), where the intermetallic phases often induce premature failure leading to severe ductility reduction. Hierarchical heterogeneities represent a promising microstructural solution to achieve simultaneous strength-ductility enhancement. However, it remains fundamentally challenging to tailor hierarchical heterostructures using conventional methods, which often rely on costly and time-consuming processing.

View Article and Find Full Text PDF

Hydrogen storage in intermetallic compounds, known as solid-state storage, relies on a phase change by the metal alloy. This phenomenon causes a violent change in volume at the crystalline scale, inducing a change of volume for the millimetric particles and, with time, important stresses on the tanks. It is thus necessary to know the mechanical behavior of the material to report these phenomena and improve the tanks' reliability.

View Article and Find Full Text PDF

Atomic Ordering-Induced Ensemble Variation in Alloys Governs Electrocatalyst On/Off States.

J Am Chem Soc

January 2025

Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.

The catalytic behavior of a material is influenced by ensembles─the geometric configuration of atoms on the surface. In conventional material systems, ensemble effects and the electronic structure are coupled because these strategies focus on varying the material composition, making it difficult to understand the role of ensembles in isolation. This study introduces a methodology that separates geometric effects from the electronic structure.

View Article and Find Full Text PDF

A Universal Solid-Phase Synthetic Strategy for Ultrafine Intermetallic Libraries Confined in Ordered Mesoporous Carbon.

Adv Mater

December 2024

Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China.

Article Synopsis
  • Ordered intermetallic nanocatalysts supported on high-surface-area materials show significantly improved catalytic activity and stability compared to random alloys.
  • Synthesizing these ultrafine nanocatalysts has been difficult due to high temperatures causing sintering and phase separation, but a new method has been developed that effectively prevents these issues even at temperatures up to 1000 °C.
  • The researchers successfully created a library of intermetallic nanocatalysts, highlighting the exceptional performance of PtFe nanocatalysts, which outperformed traditional platinum catalysts and could lead to advancements in industrial applications.
View Article and Find Full Text PDF

Intermetallics, which encompass a wide range of compounds, often exhibit similar or closely related crystal structures, resulting in various intermetallic systems with structurally derivative phases. This study examines the hypothesis that deformation behavior can be transferred from fundamental building blocks to structurally related phases using the binary samarium-cobalt system. SmCo and SmCo are investigated as fundamental building blocks and compared them to the structurally related SmCo and SmCo phases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!