Experimental Study of Avalanche Damage Protection Methods for Main Steel Gas Pipelines.

Materials (Basel)

Department of Industrial Civil and Road Construction, M. Auezov South Kazakhstan University, Av. Tauke Khan, No. 5, Shymkent 160012, Kazakhstan.

Published: June 2024

AI Article Synopsis

  • The study explored methods to prevent avalanche damage to gas pipelines, examining single steel rings and wire winding techniques.
  • Reinforcement with single rings effectively reduced crack widths and lengths significantly more than wire winding under varying temperatures.
  • The findings emphasize the superiority of using single rings for crack localization, providing valuable insights for engineers and researchers in pipeline design and reinforcement.

Article Abstract

This paper conducted an experimental study of reduced models of a main gas pipeline for avalanche damage considering operational conditions. Two options were considered as a method of avalanche damage prevention: single steel rings at the crack edges and steel winding with a winding pitch of 0.25 m. For the tension force, 5% of the steel wire breaking force was taken, which was equal to 1 mm. The ambient environment was simulated by a climatic chamber, where two options of temperature loads were considered: +20 °C and -10 °C. It was found that reinforcement with single rings of pipeline models under conditions of positive (+20 °C) and negative (-10 °C) temperatures showed that the crack opening width in the ring direction decreased 1.63 times and 1.9 times, accordingly. The crack length (longitudinal direction) decreased 2.18 times and 2.45 times, accordingly. The reinforcement of the pipeline models with prestressed wire winding on the crack propagation under conditions of positive (+20 °C) and negative (-10 °C) temperatures showed that the width of the crack opening in the ring direction decreased 1.5 times and 1.46 times, accordingly. The crack length (longitudinal direction) decreased 1.4 times and 1.44 times accordingly, which is a positive moment in addressing the issue of the localisation and stoppage of a crack fracture in main gas pipelines. Simultaneously, the analysis of the prestressed pipelines model test results on crack fracture propagation showed that single rings are more effective, which decreased the crack opening width by 1.1 times and the crack length up to 1.5. Therefore, the experimental results obtained positively complement the available methods of crack localisation in main gas pipelines, which can be used by engineers and research communities when designing or reinforcing existing operating main steel gas pipelines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11242902PMC
http://dx.doi.org/10.3390/ma17133171DOI Listing

Publication Analysis

Top Keywords

gas pipelines
16
direction decreased
16
avalanche damage
12
main gas
12
+20 °c
12
-10 °c
12
crack opening
12
times crack
12
crack length
12
crack
11

Similar Publications

Background: Inhalational anesthetic agents are a major source of potent greenhouse gases in the medical sector, and reducing their emissions is a readily addressable goal. Nitrous oxide (NO) has a long environmental half-life relative to carbon dioxide combined with a low clinical potency, leading to relatively large amounts of NO being stored in cryogenic tanks and H cylinders for use, increasing the chance of pollution through leaks. Building on previous findings, Stanford Health Care's (SHC's) NO emissions were analyzed at 2 campuses and targeted for waste reduction as a precursor to system-wide reductions.

View Article and Find Full Text PDF

Identification of potential MMP-8 inhibitors through virtual screening of natural product databases.

In Silico Pharmacol

January 2025

College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao, 266580 China.

Matrix metalloproteinase-8 (MMP-8), a type II collagenase, is a key enzyme in the degradation of collagens and is implicated in various pathological processes, making it a promising target for drug discovery. Despite advancements in the development of MMP-8 inhibitors, concerns over potential adverse effects persist. This study aims to address these concerns by focusing on the development of novel compounds with improved safety profiles while maintaining efficacy.

View Article and Find Full Text PDF

The swelling mechanism of ethylene-vinyl acetate polymer in different solvents molecular dynamics and experimental studies.

Soft Matter

January 2025

National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing 102206, People's Republic of China.

Ethylene-vinyl acetate (EVA) film is the predominant encapsulation material in crystalline silicon photovoltaic modules, the efficient and eco-friendly processing of which is essential for the recycling of the modules. Among the various existing techniques, the chemical approach uses solvents to induce swelling and dissolution on the EVA film to facilitate the separation of distinct layers. This method demonstrates the potential for achieving low-energy consumption and minimal-damage retrieval of the diverse materials within the components.

View Article and Find Full Text PDF

Fluid displacement within layered porous media is more complex than in nonlayered ones. Most of the previous studies placed a focus on the porous media with layerings perpendicular to the flow direction, and the effects of pore topology were often ignored. Therefore, this study aims to reveal the flow physics in porous media with layering parallel to the flow direction by accounting for the specific pore topology.

View Article and Find Full Text PDF

Thermoelectric Energy Harvesting for Exhaust Waste Heat Recovery: A System Design.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States.

Thermal energy harvesting for high-speed moving objects is particularly promising in providing an efficient and sustainable energy source to enhance operational capabilities and endurance. Thermoelectric (TE) technology, by exploiting temperature gradients between a heat source and ambient temperature, can provide a continuous power supply to such systems, reducing the reliance on conventional batteries and extending operation times. However, the integrated thermoelectric generator (TEG) system design research is far behind materials development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!