Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Vat photopolymerization (VPP), as an additive manufacturing (AM) technology, can conveniently produce ceramic parts with high resolution and excellent surface quality. However, due to the inherent brittleness and low toughness of ceramic materials, manufacturing defect-free ceramic parts remains a challenge. Many researchers have attempted to use carbon fibers as additives to enhance the performance of ceramic parts, but these methods are mostly applied in processes like fused deposition modeling and hot pressing. To date, no one has applied them to VPP-based AM technology. This is mainly because the black carbon fibers reduce laser penetration, making it difficult to cure the ceramic slurry and thus challenging to produce qualified ceramic parts. To address this issue, our study has strictly controlled the amount of carbon fibers by incorporating trace amounts of carbon fiber powder into the original ceramic slurry with the aim to investigate the impact of these additions on the performance of ceramic parts. In this study, ceramic slurries with three different carbon fiber contents (0 wt.%, 0.1 wt.%, 0.2 wt.%, and 0.3 wt.%) were used for additive manufacturing. A detailed comparative analysis of the microstructure, physical properties, and mechanical performance of the parts was conducted. The experimental results indicate that the 3D-printed alumina parts with added carbon fibers show varying degrees of improvement in multiple performance parameters. Notably, the samples prepared with 0.2 wt.% carbon fiber content exhibited the most significant performance enhancements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11242195 | PMC |
http://dx.doi.org/10.3390/ma17133127 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!