This article presents the results of a numerical analysis of a nitride-based vertical-cavity surface-emitting laser (VCSEL). The analyzed laser features an upper mirror composed of a monolithic high-contrast grating (MHCG) and a dielectric bottom mirror made of SiO and TaO materials. The emitter was designed for light emission at a wavelength of 403 nm. We analyze the influence of the size of the dielectric bottom mirrors on the operation of the laser, including its power-current-voltage (LIV) characteristics. We also study the effect of changing the electrical aperture radius (active area dimensions). We demonstrate that the appropriate selection of these two parameters enables the temperature inside the laser to be reduced, lowering the laser threshold current and increasing its optical power output significantly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11242903PMC
http://dx.doi.org/10.3390/ma17133107DOI Listing

Publication Analysis

Top Keywords

aperture radius
8
vertical-cavity surface-emitting
8
surface-emitting laser
8
dielectric bottom
8
laser
6
study bottom
4
bottom distributed
4
distributed bragg
4
bragg reflector
4
reflector radius
4

Similar Publications

As the core component of a swivel bridge, the spherical hinge structure exhibits complex mechanical behavior under high pressure, making it challenging to describe accurately through theoretical analysis or on-site monitoring. In this context, this paper systematically examined the mechanical characteristics and key design parameters of a simplified spherical hinge structure using numerical simulations and formula derivation. Additionally, an indoor scaled test was conducted based on a representative spherical hinge structure to further investigate its mechanical properties.

View Article and Find Full Text PDF

A single crystal sapphire component has been widely used in various high-tech fields because of its significant advantages such as high hardness, high stability, and excellent optical and mechanical properties, and has put forward high requirements for surface accuracy and quality. The existing sapphire polishing technology has problems such as low polishing efficiency, difficult control of polishing accuracy, and difficulty in removing surface defects and subsurface damage introduced by the front grinding process. Therefore, for the polishing and damage removal stage of sapphire optical components, the surface shape accuracy should be strictly controlled, especially for the surface shape accuracy after ultra-precision grinding.

View Article and Find Full Text PDF

Continuous exploitation in mining areas damages the surrounding environment and has various severe geological impacts. Hence, long-term monitoring of mining areas is crucial to reducing these impacts. Differential interferometric synthetic aperture radar (D-InSAR) is widely applied to monitor the subsidence in mining areas, but it cannot obtain accurate large-gradient subsidence result in the centre of the subsidence basin in mining areas due to the de-coherence phenomenon.

View Article and Find Full Text PDF

Optical systems in astronomy have extremely high requirements on the full-aperture surface precision and fabrication efficiency of aspherical mirrors. However, the current full-aperture optics fabrication method suffers from both fabrication and computation inefficiency. The former is caused by the isolated polishing strategy for the inner and edge regions of the mirror with different tools, while the latter is caused by the global computation strategy for the two regions.

View Article and Find Full Text PDF

In recent years, free-space optical communication based on various vortex beams has gained significant attention due to its high channel capacity and low bit error rate (BER). To investigate a novel type of vortex beam (termed as gamma beam) and its application in free-space optical communication (FSO), a comprehensive analysis of its transmission performance in weak-to-strong non-Kolmogorov turbulence has been conducted for the first time. Based on the extended Rytov method, the propagation behaviors of the gamma beam via weak-to-strong non-Kolmogorov turbulent atmosphere is explored, revealing that gamma beams may outperform LG beams and HyGG beams in certain short links.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!