A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Integration of ANN and FEA and Its Application to Property Prediction of Dual-Performance Turbine Disks. | LitMetric

Regulating the microstructure of powder metallurgy (P/M) nickel-based superalloys to achieve superior mechanical properties through heat treatment is a prevalent method in turbine disk design. However, in the case of dual-performance turbine disks, the complexity and non-uniformity of the heat treatment process present substantial challenges. The prediction of yield strength is typically derived from the analysis of microstructures under various heat treatment regimes. This method is time-consuming, expensive, and the accuracy often depends on the precision of microstructural characterization. This study successfully employed a coupled method of Artificial Neural Network (ANN) and finite element analysis (FEA) to reveal the relationship between the heat treatment process and yield strength. The coupled method accurately predicted the location specified and temperature-dependent yield strength based on the heat treatment parameters such as holding temperatures and cooling rates. The root mean square error (RMSE) and mean absolute percentage deviation (MAPD) for the training set are 50.37 and 3.77, respectively, while, for the testing set, they are 50.13 and 3.71, respectively. Furthermore, an integrated model of FEA and ANN is established using a Abaqus user subroutine. The integrated model can predict the yield strength based on temperature calculation results and automatically update material properties of the FEA model during the loading process simulation. This allows for an accurate calculation of the stress-strain state of the turbine disk during actual working conditions, aiding in locating areas of stress concentration, plastic deformation, and other critical regions, and provides a novel reliable reference for the rapid design of the turbine disk.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11242190PMC
http://dx.doi.org/10.3390/ma17133045DOI Listing

Publication Analysis

Top Keywords

heat treatment
20
yield strength
16
turbine disk
12
dual-performance turbine
8
turbine disks
8
treatment process
8
coupled method
8
strength based
8
integrated model
8
turbine
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!