The collection, storage, and transport of samples prior to and during analysis is of utmost importance, especially for highly potent analogs that may not be present in high concentrations and are susceptible to pH or thermally mediated degradation. An accelerated stability study was performed on 17 fentanyl analogs (fentalogs) over a wide range of pH (2-10) and temperature (20-60°C) conditions over 24 h. Dilute aqueous systems were used to investigate temperature and pH-dependent kinetics using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Liquid chromatography-quadrupole/time-of-flight-mass spectrometry (LC-Q/TOF-MS) was used for structural elucidation of degradants. With the exception of remifentanil, all fentalogs evaluated were stable at pH 6 or lower. Fentalogs were generally unstable in strongly alkaline environments and at elevated temperatures. Remifentanil was the least stable drug and N-dealkylated fentalogs were the most stable. Fentanyl degraded to acetylfentanyl, norfentanyl, fentanyl N-oxide, and 1-phenethylpyridinium salt (1-PEP). A total of 26 unique breakdown products were observed for 15 of the fentanyl derivatives studied. Common degradation pathways involved N-dealkylation, oxidation of the piperidine nitrogen, and β-elimination of N-phenylpropanamide followed by oxidation/dehydration of the piperidine ring. Ester and amide hydrolysis, demethylation at the propanamide, and O-demethylation were observed for selected fentalogs only. The potential for analyte loss should be considered during the pre-analytical phase (i.e., shipping and transport) where environmental conditions may not be controlled, as well as during the analysis itself.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1556-4029.15578 | DOI Listing |
Res Vet Sci
December 2024
Botswana University of Agriculture and Natural Resources, P/Bag BR 0027, Gaborone, Botswana.
Approximately 20 million cases and 0.15 million human fatalities worldwide each year are caused by Salmonellosis. A mechanistic compartmental model based on ordinary differential equations is proposed to evaluate the effects of temperature and pH on the transmission dynamics of Salmonellosis.
View Article and Find Full Text PDFGels
December 2024
College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae 50834, Republic of Korea.
The objective of this work was to develop a supersaturated gel formulation (SGF) loaded with the maximum atorvastatin calcium trihydrate (ATR) dose. The maximum dose strength of ATR needs to be reduced through improving solubility and dissolution rate to mitigate side effects due to the necessity of taking high doses. ATR has highly pH-dependent solubility at 37 °C, leading to poor solubility (<10 μg/mL) in stomach acid (pH 1.
View Article and Find Full Text PDFDrug Dev Ind Pharm
January 2025
Faculty of Pharmacy, Department of Pharmaceutical Technology, Gazi University, Etiler, Turkey.
Introduction: This study aims to develop immediate release tablet formulations of lornoxicam (LRX) using hot melt extrusion (HME)-based fused deposition modeling (FDM) focusing on the adjustment of drug release by arranging infill densities and evaluating microcrystalline cellulose II (MCC II) as a disintegrating agent for HME-FDM purposes. LRX is a poorly soluble drug that exhibits pH-dependent solubility with a high thermal degradation temperature. These characteristics make it an ideal model drug for the HME-based FDM technique.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China. Electronic address:
Oxalate decarboxylase converts oxalate to formate and CO without requiring organic cofactors, making it biotechnologically relevant for applications in food, agriculture, and diagnostics. Its activity is highly dependent on pH; however, the pH-dependent catalytic mechanism remains poorly understood. This study identified a novel oxalate decarboxylase, BsOxdC, from Bacillus safensis and investigated its catalytic properties through heterologous expression and enzymatic assays.
View Article and Find Full Text PDFMacromol Rapid Commun
December 2024
Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
The study of dynamic covalent chemistry (DCC) is growing rapidly in polymer chemistry. The dynamic covalent chemistry of polyaminals formed by the reaction of linear polyethyleneimine (L-PEI) with various functional aldehydes is explored. The study demonstrates the pH-dependent kinetics of polyaminal formation and the versatility of polyaminals in controlling the release of aldehydes under ambient conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!