Transformation of As and Cd associated with Fe-Mn-modified biochar during simultaneous remediation on the contaminated soil.

Environ Sci Pollut Res Int

Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China.

Published: July 2024

Here, Fe- and Mn-modified biochar (BC-Fe-Mn) was applied to simultaneously stabilize As and Cd in the contaminated soil. The removal efficiencies for NaHCO-extractable As and DTPA-extractable Cd by BC-Fe-Mn were 60.8% and 49.6%, respectively. The speciation analyses showed that the transformation to low-crystallinity Fe-bound (F3) As, Fe-Mn oxide-bound (OX) of Cd, and residual As and Cd was primarily attributed to stabilizing the two metal(loid)s. Moreover, the correlation analyses showed that the increase of As in F3 fraction was significantly and positively associated with the increase of OX fraction Mn (r = 0.64). Similarly, OX fraction Cd was increased notably with increasing OX fraction Fe (r = 0.91) and OX fraction Mn (r = 0.76). In addition, a novel dialysis experiment was performed to separate the reacted BC-Fe-Mn from the soil for intensively investigating the stabilization mechanisms for As and Cd by BC-Fe-Mn. The characteristic crystalline compounds of (FeMn)OOH and FeO on the surface of BC-Fe-Mn were revealed by SEM-EDS and XRD. And FTIR analyses showed that α-FeOOH, R-COOFe/Mn, and O-H on BC-Fe-Mn potentially served as the reaction sites for As and Cd. A crystalline compound of MnAsO was found in the soil treated by BC-Fe-Mn in the dialysis experiment. Thus, our results are beneficial to deeper understand the mechanisms of simultaneous stabilization of As and Cd by BC-Fe-Mn in soil and support the application of the materials on a large scale.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-34384-6DOI Listing

Publication Analysis

Top Keywords

contaminated soil
8
bc-fe-mn
8
increase fraction
8
dialysis experiment
8
bc-fe-mn soil
8
soil
5
fraction
5
transformation associated
4
associated fe-mn-modified
4
fe-mn-modified biochar
4

Similar Publications

Introduction: Exploring the interactions between dark septate endophytes (DSE) in plant roots across diverse heavy metal habitats-considering host plants, site characteristics, and microbial communities-provides insights into the distribution patterns of DSE in metal-rich environments and their mechanisms for developing heavy metal resistance.

Methods: This study collected samples of three common plant species (, PA, , SV, and , AA) and their corresponding soil samples from three heavy metal-contaminated sites: Baiyang Lake, BY, Fengfeng mining area, FF, and Huangdao, HD. Utilizing high-throughput sequencing and physicochemical analysis methods, the biological and abiotic factors affecting DSE colonization and distribution in the roots were investigated.

View Article and Find Full Text PDF

is a rod-shaped, flagellated, non-lactose fermenting, gram negative bacterium, usually found in water and soil habitats. generally causes nosocomial infections in immunocompromised patients. Increased infection rates are seen in those patients with medical devices inserted, due to this organism's innate ability to attach to moist and inanimate objects.

View Article and Find Full Text PDF

Can Spp. Contribute to the Bioremediation and Biostimulation of Plants in Soil Contaminated with Herbicides?

ACS Omega

January 2025

Laboratory of Biological Control of Plant Disease and Laboratory of Plant Biotechnology, Institute of Biotechnology, University of Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Petrópolis, Caxias do Sul, Rio Grande do Sul 95070-560, Brazil.

This work aimed to evaluate the potential of spp. in the bioremediation of herbicides and biostimulation of plants in herbicide-contaminated soils. In the first phase, the experiment followed a completely randomized design in a 4 × 3 × 4 factorial scheme with five replications, four strains of spp.

View Article and Find Full Text PDF

From contamination to detection: The growing threat of heavy metals.

Heliyon

January 2025

Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, New Cairo, 11835, Egypt.

Heavy metals like lead, mercury, cadmium, and arsenic are environmental pollutants that accumulate in ecosystems and pose significant health risks to humans and wildlife, primarily through food chain contamination where plants absorb heavy metals, affecting their growth and threatening consumer health. Cognitive and cardiovascular functions are particularly affected by exposure to heavy metals even at low concentrations through the induction of oxidative stress. Various analytical techniques are used in measuring heavy metals in different environmental and biological samples.

View Article and Find Full Text PDF

Background: The adverse health impacts of ambient temperature have been well-documented, encompassing not only the mortality and morbidity burden but also mood and mental health disorders. However, the relationship between temperature and social isolation remains unexplored. The objective of the current study was to investigate the potential associations between ambient temperature and social isolation among the aging population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!