Rat Ductal Cell-Derived Differentiation into Islet-Like Cells.

Methods Mol Biol

Ankara Medipol University, Medical Faculty, Physiology Department, Ankara, Turkey.

Published: July 2024

Regenerative medicine investigates the conversion of pancreatic ductal cells into functional islet cells, offering innovative treatments for conditions such as diabetes. Ductal cells, primarily supporting the pancreas' exocrine functions, can differentiate into various cell types, including islet cells, under specific conditions, opening new avenues in research and therapy. The outlined protocol elaborates on the conversion process, covering ductal cell differentiation induction, and insulin-producing capacity assessment. The primary objective is to address the shortage of insulin-secreting cells for transplantation, thereby advancing diabetes treatment methodologies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/7651_2024_558DOI Listing

Publication Analysis

Top Keywords

ductal cells
8
islet cells
8
cells
6
rat ductal
4
ductal cell-derived
4
cell-derived differentiation
4
differentiation islet-like
4
islet-like cells
4
cells regenerative
4
regenerative medicine
4

Similar Publications

Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal forms of cancer, and despite low incidence rates, it remains the sixth leading cause of cancer related deaths worldwide. Immunotherapy, which aims to enhance the immune system's ability to recognize and eliminate cancer cells, has emerged as a promising approach in the battle against PDAC. PARP7, a mono-ADP-ribosyltransferase, is a negative regulator of the type I interferon (IFN-I) pathway and has been reported to reduce anti-tumour immunity.

View Article and Find Full Text PDF

Pancreatic cancer is among the most challenging tumors to treat, and due to its immune tolerance characteristics, existing immunotherapy methods are not effective in alleviating the disease. Oncolytic virus therapy, a potential new strategy for treating pancreatic cancer, also faces the limitation of being ineffective when used alone. Elucidating the key host endogenous circular RNAs (circRNAs) involved in M1 virus-mediated killing of pancreatic ductal adenocarcinoma (PDAC) cells may help overcome this limitation.

View Article and Find Full Text PDF

Background: Signaling pathways centered on the G-protein ADP-ribosylation factor 6 (Arf6) and its downstream effector ArfGAP with the SH3 Domain, Ankyrin Repeat and PH Domain 1 (AMAP1) drive cancer invasion, metastasis, and therapy resistance. The Arf6-AMAP1 pathway has been reported to promote receptor recycling leading to programmed cell death-ligand 1 (PD-L1) overexpression in pancreatic ductal carcinoma. Moreover, AMAP1 regulates of nuclear factor-kappa B (NF-κB), which is an important molecule in inflammation and immune activation, including tumor immune interaction through PD-L1 regulation.

View Article and Find Full Text PDF

Deciphering the senescence-based tumoral heterogeneity and characteristics in pancreatic cancer: Results from parallel bulk and single-cell transcriptome data.

IUBMB Life

January 2025

Department of Hepatopancreatobiliary Surgery, Ningbo Medical Center Lihuili Hospital (The Affiliated Lihuili Hospital, Ningbo University), Ningbo, Zhejiang, People's Republic of China.

The prevalent intra- and intertumoral heterogeneity results in undesirable prognosis and therapy failure of pancreatic cancer, potentially resulting from cellular senescence. Herein, integrated analysis of bulk and single-cell RNA-seq profiling was conducted to characterize senescence-based heterogeneity in pancreatic cancer. Publicly available bulk and single-cell RNA sequencing from pancreatic cancer patients were gathered from TCGA-PAAD, PACA-AU, PACA-CA, and GSE154778 datasets.

View Article and Find Full Text PDF

CASC8 activates the pentose phosphate pathway to inhibit disulfidptosis in pancreatic ductal adenocarcinoma though the c-Myc-GLUT1 axis.

J Exp Clin Cancer Res

January 2025

Department of Hepato-Biliary-Pancreatic Surgery, General Surgery, Huadong Hospital, Fudan University, Shanghai, 200040, PR China.

Purpose: Glucose starvation induces the accumulation of disulfides and F-actin collapse in cells with high expression of SLC7A11, a phenomenon termed disulfidptosis. This study aimed to confirm the existence of disulfidptosis in pancreatic ductal adenocarcinoma (PDAC) and elucidate the role of Cancer Susceptibility 8 (CASC8) in this process.

Methods: The existence of disulfidptosis in PDAC was assessed using flow cytometry and F-actin staining.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!