Many researchers are interested in the possibility of manipulating the targeting specificity of extracellular vesicles (EVs) for their use as physiological delivery vehicles for drugs and bioactive molecules. Our studies demonstrated the possibility of directing EVs toward the desired acceptor cell by coating them with antigen-specific antibody light chains. Here, we describe the methods for detection of the presence of antibody light chains on the EV surface, proving their ability to specifically bind the antigen and for separating the antigen-binding EV subpopulation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-3914-6_18DOI Listing

Publication Analysis

Top Keywords

antibody light
12
light chains
12
extracellular vesicles
8
antigen-specific antibody
8
assessment antigen-binding
4
antigen-binding capacity
4
capacity separation
4
separation extracellular
4
vesicles coated
4
coated antigen-specific
4

Similar Publications

Background: Immunoglobulin G4-related disease (IgG4-RD) is an immune-mediated fibrous inflammatory disease. Recently, an association between IgG4-RD and tuberculosis (TB) has been reported.

Case Summary: We report a 56-year-old man complaining of a cough and poor appetite for 2 months and oliguria for 1 day.

View Article and Find Full Text PDF

Purpose: Therapeutic monoclonal antibodies (mAbs) are prone to degradation via aggregation and fragmentation. In this study, forced degradation of trastuzumab (TmAb) was explored in saline and in-vitro models having HO and exposed to UV light (case study 1) both bleomycin (BML) formulation and ferrous ions (Fe) (case study 2) and sodium hypochlorite (NaOCl) (case study 3).

Methods: Size exclusion chromatography, dynamic light scattering, spectroscopic analysis, and fluorescence microscope image processing was carried out for characterizing TmAb degradation.

View Article and Find Full Text PDF

Enhancing the efficacy of near-infrared photoimmunotherapy through intratumoural delivery of CD44-targeting antibody-photoabsorber conjugates.

EBioMedicine

January 2025

Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Immunopathology, World Premier International Research Center, Initiative, Immunology, Frontier Research Center, Osaka University, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan; Center for Infectious Diseases for Education and Research, Osaka University, Osaka, Japan; Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology, Osaka University, Osaka, Japan; Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan. Electronic address:

Background: Photoimmunotherapy (PIT) is a potent modality for cancer treatment. The conventional PIT regimen involves the systemic delivery of an antibody-photoabsorber conjugate, followed by a 24-h waiting period to ensure adequate localisation on the target cells. Subsequent exposure to near-infrared (NIR) light selectively damages the target cells.

View Article and Find Full Text PDF

Background/objectives: Photoimmunotherapy (PIT) is an innovative approach for the targeted therapy of cancer. In PIT, photosensitizer dyes are conjugated to tumor-specific antibodies for targeted delivery into cancer cells. Upon irradiation with visible light, the photosensitizer dye is activated and induces cancer-specific cell death.

View Article and Find Full Text PDF

is Expressed on the Left Side of the Brain Vesicle in the Ascidian Larva.

Dev Reprod

December 2024

Department of Marine Bioscience, Gangneung-Wonju National University, Gangneung 25457, Korea.

The ascidian larvae, which display a chordate ground body plan, are left-right asymmetric in several structures, including the brain vesicle. In ascidian larvae, the ocellus and otolith pigment cells, which are thought to detect light and gravity respectively, are located on the right side of the brain vesicle, while the coronet cells, which are presumed to be dopaminergic, are located on the left side. To study how left-right asymmetry of the brain vesicle in the ascidian larva is determined, I attempted to isolate a gene that is expressed in the brain vesicle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!