Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Named entity recognition is a fundamental subtask for knowledge graph construction and question-answering in the agricultural diseases and pests field. Although several works have been done, the scarcity of the Chinese annotated dataset has restricted the development of agricultural diseases and pests named entity recognition(ADP-NER). To address the issues, a large-scale corpus for the Chinese ADP-NER task named AgCNER was first annotated. It mainly contains 13 categories, 206,992 entities, and 66,553 samples with 3,909,293 characters. Compared with other datasets, AgCNER maintains the best performance in terms of the number of categories, entities, samples, and characters. Moreover, this is the first publicly available corpus for the agricultural field. In addition, the agricultural language model AgBERT is also fine-tuned and released. Finally, the comprehensive experimental results showed that BiLSTM-CRF achieved F-score of 93.58%, which would be further improved to 94.14% using BERT. The analysis from multiple aspects has verified the rationality of AgCNER and the effectiveness of AgBERT. The annotated corpus and fine-tuned language model are publicly available at https://doi.org/XXX and https://github.com/guojson/AgCNER.git .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11245494 | PMC |
http://dx.doi.org/10.1038/s41597-024-03578-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!