Techniques for evaluating the ATP-gated ion channel P2X7 receptor function in macrophages and microglial cells.

J Immunol Methods

Laboratório de Imunofisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.. Electronic address:

Published: September 2024

AI Article Synopsis

Article Abstract

Resident macrophages are tissue-specific innate immune cells acting as sentinels, constantly patrolling their assigned tissue to maintain homeostasis, and quickly responding to pathogenic invaders or molecular danger signals molecules when necessary. Adenosine triphosphate (ATP), when released to the extracellular medium, acts as a danger signal through specific purinergic receptors. Interaction of ATP with the purinergic receptor P2X7 activates macrophages and microglial cells in different pathological conditions, triggering inflammation. The highly expressed P2X7 receptor in these cells induces cell membrane permeabilization, inflammasome activation, cell death, and the production of inflammatory mediators, including cytokines and nitrogen and oxygen-reactive species. This review explores the techniques to evaluate the functional and molecular aspects of the P2X7 receptor, particularly in macrophages and microglial cells. Polymerase chain reaction (PCR), Western blotting, and immunocytochemistry or immunohistochemistry are essential for assessing gene and protein expression in these cell types. Evaluation of P2X7 receptor function involves the use of ATP and selective agonists and antagonists and diverse techniques, including electrophysiology, intracellular calcium measurements, ethidium bromide uptake, and propidium iodide cell viability assays. These techniques are crucial for studying the role of P2X7 receptors in immune responses, neuroinflammation, and various pathological conditions. Therefore, a comprehensive understanding of the functional and molecular aspects of the P2X7 receptor in macrophages and microglia is vital for unraveling its involvement in immune modulation and its potential as a therapeutic target. The methodologies presented and discussed herein offer valuable tools for researchers investigating the complexities of P2X7 receptor signaling in innate immune cells in health and disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jim.2024.113727DOI Listing

Publication Analysis

Top Keywords

p2x7 receptor
24
macrophages microglial
12
microglial cells
12
p2x7
8
receptor function
8
innate immune
8
immune cells
8
pathological conditions
8
functional molecular
8
molecular aspects
8

Similar Publications

P2X receptors (P2XRs) are adenosine 5'-triphosphate (ATP)-gated ion channels comprising homomeric and heteromeric trimers of seven subtypes (P2X1-P2X7) that confer different rates of desensitization. The helical recoil model of P2XR desensitization proposes stability of the cytoplasmic cap sets the rate of desensitization, but timing of its formation is unclear for slow-desensitizing P2XRs. We report cryo-electron microscopy structures of full-length wild-type human P2X4 receptor in apo closed, antagonist-bound inhibited, and ATP-bound desensitized states.

View Article and Find Full Text PDF

Lipopolysaccharide-Neutralizing Peptide Modulates P2X7 Receptor-Mediated Interleukin-1β Release.

ACS Pharmacol Transl Sci

January 2025

Pharmaceutical Institute, Pharmacology and Toxicology, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany.

Lipopolysaccharide (LPS)-neutralizing peptides are emerging as new potential therapeutic modalities to treat sepsis and skin infections. Purinergic ligand-gated ion channels (P2X receptors) play a critical role in various biological processes, including inflammation. Recent drug development efforts have significantly focused on the modulation of P2X receptors.

View Article and Find Full Text PDF

Purinergic signaling plays a major role in aging and neurodegenerative diseases, which are associated with memory decline. Blackcurrant (BC), an anthocyanin-rich berry, is renowned for its antioxidant and neuroprotective activities. However, evidence on the effects of BC on purinergic signaling is lacking.

View Article and Find Full Text PDF

Targeted Cx43 therapeutics reduce NLRP3 inflammasome activation in rat burn injury.

Burns

December 2024

Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11, Mandalay Road, 308232, Singapore; Skin Research Institute Singapore, Level 17, Clinical Sciences Building, 11, Mandalay Road, 308232,  Singapore; National Skin Centre Singapore, 1 Mandalay Rd, 308205, Singapore. Electronic address:

Burns are dynamic injuries characterized by an initial zone of necrosis that progresses to compromise surrounding tissue. Acute inflammation and cell death are two main factors contributing to burn progression. These processes are modulated by Connexin43 (Cx43) hemichannels and gap junctions in burns and chronic wounds.

View Article and Find Full Text PDF

Although low-intensity focused ultrasound (LiFUS) with microbubbles is used to temporally open the blood-brain barrier (BBB), the underlying mechanism is not fully understood. This study aimed to analyze BBB-related alterations in the brain microenvironment after LiFUS, with a focus on the involvement of the purinergic P ×  receptor. Sprague-Dawley rats were sonicated with LiFUS at 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!