Gallic acid ameliorates synovial inflammation and fibrosis by regulating the intestinal flora and its metabolites.

Toxicol Appl Pharmacol

Department of Orthopaedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210023, China; Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing 210023, China. Electronic address:

Published: September 2024

Gallic acid (GA) has been found by a large number of studies to have pharmacological effects such as antioxidant and anti-inflammatory properties. However, the underlying therapeutic mechanisms are not fully understood.. Studies have shown that altering the intestinal flora affects host metabolism and effectively mediates the development of synovitis. The aim of this study was to explore the pharmacological effects of GA in the treatment of synovial inflammation and anti-synovial fibrosis in knee osteoarthritis (KOA) and the underlying mechanisms by macrogenomics combined with off-target metabolomics. We established a synovitis model via in vivo and in vitro experiments to observe the effect of GA intervention on synovitis. Moreover, we collected serum and feces from rats and analyzed the changes in intestinal flora by macro-genome sequencing and the changes in metabolites in the serum by untargeted metabolomics. We found that GA reduced the levels of IL-1β, IL-6, and TNF-α, and decreased the protein expression levels of α-SMA, TGF-β, and Collagen I in synovial tissues and cells, and the composition and function of the intestinal flora were similarly altered. Combined with macrogenomic pathway enrichment analysis and metabolic pathway enrichment analysis, these findings revealed that GA impacts Bacteroidia and Muribaculaceae abundance, and via the following metabolic pathways: sphingolipid metabolism, glycerophospholipid metabolism, and arginine biology.to ameliorate synovial inflammation and fibrosis in KOA. The therapeutic effect of GA on KOA synovitis and fibrosis is partly attributed to the alleviation of metabolic disorder and the rebalancing of the intestinal flora. These results provides a rationale for the therapeutic application of GA in the treatment of synovitis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.taap.2024.117033DOI Listing

Publication Analysis

Top Keywords

intestinal flora
20
synovial inflammation
12
gallic acid
8
inflammation fibrosis
8
pharmacological effects
8
pathway enrichment
8
enrichment analysis
8
intestinal
5
flora
5
synovitis
5

Similar Publications

: Cannabidiol (CBD) is an approved treatment for childhood epilepsies and a candidate treatment for several other CNS disorders. However, it has poor oral bioavailability. We investigated the effect of a novel lipid formulation on its absorption in humans and on its tissue distribution in mice.

View Article and Find Full Text PDF

Background: Since the gut microbiota is important for athlete health and performance, its optimization is increasingly gaining attention in sports nutrition, for example, with whole fermented foods. Sauerkraut is a traditional fermented food rich in pro-, pre-, and postbiotics, which has not yet been investigated in the field of sports nutrition.

Methods: To determine whether sauerkraut could be used for gut microbiota optimization in sports nutrition, a proof-of-concept study was conducted.

View Article and Find Full Text PDF

Importance of Fecal Microbiota Transplantation and Molecular Regulation as Therapeutic Strategies in Inflammatory Bowel Diseases.

Nutrients

December 2024

Department of Internal Medicine VII, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No. 38, 540136 Targu Mures, Romania.

Noncoding RNAs, particularly microRNAs (miRNAs) and small interfering RNAs (siRNAs), have emerged as key players in the pathogenesis and therapeutic strategies for inflammatory bowel disease (IBD). MiRNAs, small endogenous RNA molecules that silence target mRNAs to regulate gene expression, are closely linked to immune responses and inflammatory pathways in IBD. Notably, miR-21, miR-146a, and miR-155 are consistently upregulated in IBD, influencing immune cell modulation, cytokine production, and the intestinal epithelial barrier.

View Article and Find Full Text PDF

Gut Microbiome Modulation of Glutamate Dynamics: Implications for Brain Health and Neurotoxicity.

Nutrients

December 2024

Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel.

The gut-brain axis plays an integral role in maintaining overall health, with growing evidence suggesting its impact on the development of various neuropsychiatric disorders, including depression. This review explores the complex relationship between gut microbiota and glutamate (Glu) regulation, highlighting its effect on brain health, particularly in the context of depression following certain neurological insults. We discuss how microbial populations can either facilitate or limit Glu uptake, influencing its bioavailability and predisposing to neuroinflammation and neurotoxicity.

View Article and Find Full Text PDF

Aim: This article aims to explore the role of the human gut microbiota (GM) in the pathogenesis of neurological, psychiatric, and neurodevelopmental disorders, highlighting its influence on health and disease, and investigating potential therapeutic strategies targeting GM modulation.

Materials And Methods: A comprehensive analysis of the gut microbiota's composition and its interaction with the human body, particularly, its role in neurological and psychiatric conditions, is provided. The review discusses factors influencing GM composition, including birth mode, breastfeeding, diet, medications, and geography.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!