Heavy metals and metalloids in the environment are recognised as a threat to the health of organism. Terrestrial birds are ideal subjects for the examination of these pollutants because of their high mobility and high intra- and interspecific variation in trophic levels. We examined the contents of 6 trace metals (Cd, Pb, Cr, Sb and V) and metalloids (As) in the liver, kidney, muscle, and feathers of woodcocks (Scolopax rusticola) from Southern Italy by a validated ICP-MS method. Significant differences in trace elements were found in all the tissues examined (p < 0.05). The highest Sb and Cr levels were found in feathers samples with mean values of 0.019 mg/Kg and 0.085 mg/Kg, respectively. High Pb levels were found in muscle, with 23 % of the samples exceeding the limits set by the European Union. Cd was predominantly found in the kidney samples (0.76 mg/Kg). Vanadium was the less abundant trace metal, showing the highest concentrations in the liver (0.028 ± 0.011 mg/Kg). Higher As levels were found in muscle (0.02 ± 0.015 mg/Kg). No significant differences between sex and age classes (juveniles vs. adults) were found, nor were there correlations between morphometric parameters and trace metal/metalloid contents. Principal Component Analysis determined differences in metal accumulation between tissues. Feathers were confirmed as useful indicators of metal contamination. The results of this work confirmed that the accumulation of toxic elements in the tissues of woodcocks is primarily influenced by ecological traits such as feeding habits and migration status. Statistical analysis of the tissues would seem to exclude important accumulation phenomena of Pb. The high levels found in the muscle could be due to lead ammunition. This work provides the first data on the accumulation of As, Cr, Sb, and V in woodcocks tissue, providing a more comprehensive insight into the potential impact of these pollutants on birds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.174712DOI Listing

Publication Analysis

Top Keywords

metals metalloids
12
trace metals
8
scolopax rusticola
8
rusticola southern
8
southern italy
8
distribution trace
4
metalloids tissues
4
tissues eurasian
4
eurasian woodcock
4
woodcock scolopax
4

Similar Publications

The cotton leafworm, Spodoptra littoralis, causes great damage to cotton crops. A new, safer method than insecticide is necessary for its control. Selenium nanoparticles (SeNPs) are metalloid nanomaterial, with extensive biological activities.

View Article and Find Full Text PDF

Factors Affecting Arsenic and Mercury Accumulation in Fish from the Colombian Caribbean: A Multifactorial Approach Using Machine Learning.

Environ Res

January 2025

Facultad de Ciencias Básicas. Universidad de Córdoba. Cra 6 # 77-305, Montería, 230002. Córdoba, Colombia. Electronic address:

In marine ecosystems, arsenic (As) and total mercury (T-Hg) represent two of the major pollutants, particularly in fish due to their ecology and the affinity of these metal(loid)s with biological cycles. This study assessed the influence of total length, total weight, relative condition factor, and trophic levels of ten marine fish species from the Colombian Caribbean on As and T-Hg accumulation in muscle tissue, as well as the differentiation in accumulated amounts based on fish habitat type. In this context, Balistes capriscus exhibited the highest As median (7949.

View Article and Find Full Text PDF

Advanced spectroscopic evidence for the sequestration of heavy metals via repetitive in situ synthesis of Fe oxide.

J Hazard Mater

January 2025

Department of Civil and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea. Electronic address:

The in situ synthesis of Fe oxide is an established method for stabilizing metals and metalloids (Me) in contaminated soils. Nevertheless, the potential for enhanced Me sequestration through repeated Fe oxide application and the fundamental mechanisms of this process yet to be systemically investigated. In this study, the means by which repetitive Fe oxide synthesis enhances the immobilization of Cd, Zn, and As was investigated using batch experiments.

View Article and Find Full Text PDF

The content of 39 metals and metalloids (MMs) in submicron road dust (PM fraction) was studied in the traffic zone, residential courtyards with parking lots, and on pedestrian roads in parks in Moscow. The geochemical profiles of PM vary slightly between different types of roads and courtyards but differ significantly from those in parks. In Moscow, compared to other cities worldwide, submicron road dust contains less As, Sb, Mo, Cr, Cd, Sn, Tl, Ca, Rb, La, Y, U, but more Cu, Zn, Co, Fe, Mn, Ti, Zr, Al, V.

View Article and Find Full Text PDF

Periodic Table of Immunomodulatory Elements and Derived Two-Dimensional Biomaterials.

Adv Sci (Weinh)

January 2025

Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Biomedical Engineering Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R2H2A6, Canada.

Periodic table of chemical elements serves as the foundation of material chemistry, impacting human health in many different ways. It contributes to the creation, growth, and manipulation of functional metallic, ceramic, metalloid, polymeric, and carbon-based materials on and near an atomic scale. Recent nanotechnology advancements have revolutionized the field of biomedical engineering to tackle longstanding clinical challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!