Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Achieving precise control of nanoparticle size while maintaining consistency and high uniformity is of paramount importance for improving the efficacy of nanoparticle-based therapies and minimizing potential side effects. Although microfluidic technologies are widely used for reliable nanoparticle synthesis, they face challenges in meeting critical homogeneity requirements, mainly due to imperfect mixing efficiency. Furthermore, channel clogging during continuous operation presents a significant obstacle in terms of quality control, as it progressively impedes the mixing behavior necessary for consistent nanoparticle production for therapeutic delivery and complicates the scaling-up process. This study entailed the development of a 3D-printed novel micromixer embedded with hemispherical baffle microstructures, a dual vortex mixer (DVM), which integrates Dean vortices to generate two symmetrical counter-rotating intensified secondary flows. The DVM with a relatively large mixer volume showed rapid mixing characteristics even at a flow rate of several mL min and produced highly uniform lipids, liposomes, and polymer nanoparticles in a size range (50-130 nm) and polydispersity index (PDI) values below 0.15. For the evaluation of products, SARS-CoV-2 Spike mRNA-loaded lipid nanoparticles were examined to verify protein expression in vitro and in vivo using firefly luciferase (FLuc) mRNA. This showed that the performance of the system is comparable to that of a commercial toroidal mixer. Moreover, the vigorous in-situ dispersion of nanoparticles by harnessing the power of vortex physically minimizes the occurrence of aggregation, ensuring consistent production performance without internal clogging of a half-day operation and facilitating quality control of the nanoparticles at desired scales.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2024.07.019 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!