Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The use of beneficial microorganisms and polysaccharides for the biocontrol of plant diseases currently represents a promising tool for the management of soil-borne pathogens. Despite advancements, enhancing the efficacy and sustainability of these biocontrol methods, particularly in complex soil environments, remains a challenge. Thus, we investigated the potential of four PGPR strains encapsulated in natural alginate extracted from a brown seaweed Bifurcaria bifurcata to evaluate its biocontrol capacities against Verticillium wilt of tomato, ensuring optimal performance through a synergistic effect and innovative bacterial release. Our research demonstrated that the application of PGPR and alginate reduced disease severity and mortality rate and increased the natural defenses of tomato. Results showed that supplying alginate or the PGPR consortium at the root level s stimulates phenylalanine ammonia-lyase activity (the key enzyme of the phenylpropanoid metabolism) and the accumulation of phenolic compounds and lignin in leaves and roots. Treatment with PGPR encapsulated in alginate beads showed the best biocontrol efficiency and was accompanied by a synergistic effect reflecting a rapid, intense, and systemic induction of defense mechanisms known for their effectiveness in inducing resistance in tomato. These promising results suggest that such bioformulations could lead to innovative agricultural practices for sustainable plant protection against pathogens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.133800 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!