RNA silencing is a prominent antiviral defense mechanism in plants. When infected with a virus, RNA silencing-deficient plants tend to show exacerbated symptoms along with increased virus accumulation. However, how symptoms are exacerbated is little understood. Here, we investigated the role of the copper chaperon for superoxide dismutase (CCS) 1, in systemic necrosis observed in Argonaute (AGO)2-silenced tomato plants infected with potato virus X (PVX). While infection with the UK3 strain of PVX induced mosaic symptoms in tomato plants, systemic necrosis occurred when AGO2 was silenced. The CCS1 mRNA level was reduced and micro RNA398 (miR398), which potentially target CCS1, was increased in AGO2-knockdown tomato plants infected with PVX-UK3. Ectopic expression of CCS1 using recombinant PVX attenuated necrosis, suggesting that CCS1 alleviates systemic necrosis by activating superoxide dismutases to scavenge reactive oxygen species. Previous reports have indicated a decrease in the levels of CCS1 and superoxide dismutases along with an increased level of miR398 in plants infected with other viruses and viroids, and thus might represent shared regulatory mechanisms that exacerbate symptoms in these plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11315226 | PMC |
http://dx.doi.org/10.1016/j.virusres.2024.199436 | DOI Listing |
Plant Cell Rep
January 2025
Engineering Research Center of National Forestry and Grassland Administration for Rosa Roxburghii, Agricultural College, Guizhou University, Guiyang, 550025, People's Republic of China.
RrUNE12 binds to the RrGGP2 promoter to facilitate biosynthesis of AsA in Rosa roxburghii fruit. Furthermore, RrUNE12 upregulates antioxidant-related genes and maintains ROS homeostasis, thereby improving tolerance to salt stress. L-ascorbic acid (AsA) plays an essential role in stress defense as a major antioxidant in plant cells.
View Article and Find Full Text PDFSci Rep
January 2025
Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB, UNVM-CONICET), Villa María, Argentina.
This study investigated plant growth-promoting (PGP) mechanisms in Priestia aryabhattai VMYP6 and Paenibacillus sp. VMY10, isolated from tomato roots. Their genomes were initially assessed in silico through various approaches, and these observations were then compared with results obtained in vitro and in vivo.
View Article and Find Full Text PDFSci Rep
January 2025
Amal Jyothi College of Engineering (Autonomous), Kanjirappally, Kerala, India.
In agriculture, promptly and accurately identifying leaf diseases is crucial for sustainable crop production. To address this requirement, this research introduces a hybrid deep learning model that combines the visual geometric group version 19 (VGG19) architecture features with the transformer encoder blocks. This fusion enables the accurate and précised real-time classification of leaf diseases affecting grape, bell pepper, and tomato plants.
View Article and Find Full Text PDFJ Integr Plant Biol
January 2025
College of Horticulture, Northwest A&F University, Yangling, 712100, China.
Tomato (Solanum lycopersicum) is an important crop but frequently experiences saline-alkali stress. Our previous studies have shown that exogenous spermidine (Spd) could significantly enhance the saline-alkali resistance of tomato seedlings, in which a high concentration of Spd and jasmonic acid (JA) exerted important roles. However, the mechanism of Spd and JA accumulation remains unclear.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
Reducing endogenous CK levels accelerates fruit ripening in tomato by regulating ethylene biosynthesis and signalling pathway. Tomato is a typical climacteric fruit and is recognized as one of the most important horticultural crops globally. The ripening of tomato fruits is a complex process, highly regulated by phytohormones.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!