The electron spin echo envelope modulation (ESEEM) technique is a direct method to probe the nuclear spin coherences induced by electron spin transitions. Recently, this approach was used to study an isotopically pure YSiO crystal doped with Yb ions, and the presence of the Fermi contact interaction was proposed to explain the frequency comb detected in the two-pulse ESEEM experiment [Solovarov N. K. et al. JETP Letters 115 (6): 362-67]. Here we simulate the Fourier images of the ESEEM data. The numerical analysis shows that the modulation is mainly due to the nuclear spin coherences induced by the dipole-dipole interactions. However, the correlation between the experimental and simulated data is better when the super-hyperfine interactions of the nearby yttrium nuclei have an additional isotropic contribution. The analysis of the rescaled X-band ESEEM spectra shows that for the EPR transitions at magnetic fields > 100 mT, the main contribution to the modulation comes from the oscillations of the individual nuclei and the effect of interference between coherences originating from several nuclei is not strong. Further experiments to distinguish the sources of the echo modulation are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmr.2024.107731 | DOI Listing |
Small
January 2025
Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China.
The reasonable design of advanced anode materials for electrochemical energy storage (EES) devices is crucial in expediting the progress of renewable energy technologies. NbO has attracted increasing research attention as an anode candidate. Defect engineering is regarded as a feasible approach to modulate the local atomic configurations within NbO.
View Article and Find Full Text PDFChem Rec
January 2025
Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
In recent times, chemical looping offered a sustainable alternative for upgrading light hydrocarbons into olefins. Olefins are valuable platform chemicals that are utilized for diverse applications. To close the wide shortfall in their global supply, intensified efforts are ongoing to develop on-purpose production technologies.
View Article and Find Full Text PDFNanophotonics
January 2025
Departamento de Ingeniería Electrónica, E.T.S.I. de Telecomunicación, Instituto de Sistemas Optoelectrónicos y Microtecnología (ISOM), Universidad Politécnica de Madrid, Madrid, 28040 Spain.
Polar biaxial crystals with extreme anisotropy hold promise for the spatial control and the manipulation of polaritons, as they can undergo topological transitions. However, taking advantage of these unique properties for nanophotonic devices requires to find mechanisms to modulate dynamically the material response. Here, we present a study on the propagation of surface phonon polaritons (SPhPs) in a photonic architecture based on a thin layer of α-MoO deposited on a semiconducting 4H-SiC substrate, whose carrier density can be tuned through photoinduction.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
National Energy Metal Resources and New Materials Key Laboratory, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China.
Rechargeable Zn-air batteries (RZABs) are poised for industrial application, yet they require low-cost, high-performance catalysts that efficiently facilitate both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). The pivotal challenge lies in designing multimetal active sites and optimizing the carbon skeleton structure to modulate catalyst activity. In this study, we introduce a novel hierarchical porous carbon-supported FeCoNi bifunctional catalyst, synthesized via a spray combustion method.
View Article and Find Full Text PDFNano Lett
January 2025
Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P.R. China.
Although aliovalent ion substitution is an important strategy for enhancing ionic conductivity in halide electrolytes, the choice of doping ions is often restricted to tetravalent ions, and investigations into the intrinsic origin of the doping mechanism are lacking. In this work, we investigated the effects of Zr, Ta and W doping on the crystal structure and ionic conductivity of yttrium-based rare-earth halides. Only Zr achieves fast ion diffusion in both the (001) and (002) crystal planes by affecting the volume of the octahedron and the tetrahedral interstitial space, whereas Ta significantly enhances the ion diffusion rate in the (001) crystal plane while suppressing it in the (002) plane, and W does the opposite.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!