A computationally efficient and robust looming perception model based on dynamic neural field.

Neural Netw

Machine Life and Intelligence Research Centre, School of Mathematics and Information Science, Guangzhou University, Guangzhou, 510006, China. Electronic address:

Published: November 2024

There are primarily two classes of bio-inspired looming perception visual systems. The first class employs hierarchical neural networks inspired by well-acknowledged anatomical pathways responsible for looming perception, and the second maps nonlinear relationships between physical stimulus attributes and neuronal activity. However, even with multi-layered structures, the former class is sometimes fragile in looming selectivity, i.e., the ability to well discriminate between approaching and other categories of movements. While the latter class leaves qualms regarding how to encode visual movements to indicate physical attributes like angular velocity/size. Beyond those, we propose a novel looming perception model based on dynamic neural field (DNF). The DNF is a brain-inspired framework that incorporates both lateral excitation and inhibition within the field through instant feedback, it could be an easily-built model to fulfill the looming sensitivity observed in biological visual systems. To achieve our target of looming perception with computational efficiency, we introduce a single-field DNF with adaptive lateral interactions and dynamic activation threshold. The former mechanism creates antagonism to translating motion, and the latter suppresses excitation during receding. Accordingly, the proposed model exhibits the strongest response to moving objects signaling approaching over other types of external stimuli. The effectiveness of the proposed model is supported by relevant mathematical analysis and ablation study. The computational efficiency and robustness of the model are verified through systematic experiments including on-line collision-detection tasks in micro-mobile robots, at success rate of 93% compared with state-of-the-art methods. The results demonstrate its superiority over the model-based methods concerning looming perception.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2024.106502DOI Listing

Publication Analysis

Top Keywords

looming perception
24
looming
8
perception model
8
model based
8
based dynamic
8
dynamic neural
8
neural field
8
visual systems
8
computational efficiency
8
proposed model
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!