Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The in-situ leaching of rare earth minerals results in ecological differences between sunlit and shady slopes, which may be related to differences in the distribution REEs in the associated soil matrices. Studies of REEs mine tailings in Southern China indicated higher total concentrations of REEs on sunlit slopes compared to shady ones. Specifically, the exchangeable REEs fraction (F1-REEs) was higher on the shady slopes, whereas the Fe/Mn oxides bound REEs fraction (F3-REEs) was higher on the sunlit slopes. In addition, light REE (LREE) concentrations were lower at lower elevations. With the exception of the Ce fraction which remained stable, this indicated a change in all REEs distributions, moving from F1-REEs towards the residual fraction. Hierarchical cluster and principal component analysis revealed a strong correlation between F3-REEs, organic matter bound REEs (F4-REEs), and LREEs, and a positive association of F3-REEs with sunlight exposure. Partial Least Squares Path Modeling analysis suggested that OM promoted the conversion of LREEs to F3 and F4-REEs in soil driven by sunlight exposure. Additionally, as the Fe/Fe ratio decreased, more LREEs were converted to F3. This study suggests that sunlight and elevation both play a critical role in the geochemical dynamics of REEs in in-situ tailings, advocating for environmental evaluations to be undertaken in order to accurately understand the ecological impacts of rare earth mining.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.135095 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!