Co-mutation of OsLPR1/3/4/5 provides a promising strategy to minimize Cd contamination in rice grains.

J Hazard Mater

State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou 310058, China. Electronic address:

Published: September 2024

Minimizing cadmium (Cd) contamination in rice grains is crucial for ensuring food security and promoting sustainable agriculture. Utilizing genetic modification to generate rice varieties with low Cd accumulation is a promising strategy due to its cost-effectiveness and operational simplicity. Our study demonstrated that the CRISPR-Cas9-mediated quadruple mutation of the multicopper oxidase genes OsLPR1/3/4/5 in the japonica rice cultivar Tongjing 981 had little effect on yields. However, a notable increase was observed in the cell wall functional groups that bind with Cd. As a result, the quadruple mutation of OsLPR1/3/4/5 enhanced Cd sequestration within the cell wall while reducing Cd concentrations in both xylem and phloem sap, thereby inhibiting Cd transport from roots to shoots. Consequently, Cd concentrations in brown rice and husk in oslpr1/3/4/5 quadruple mutants (qm) decreased by 52% and 55%, respectively, compared to the wild-type. These findings illustrate that the quadruple mutation of OsLPR1/3/4/5 is an effective method for minimizing Cd contamination in rice grains without compromising yields. Therefore, the quadruple mutation of OsLPR1/3/4/5 via biotechnological pathways may represent a valuable strategy for the generation of new rice varieties with low Cd accumulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.135165DOI Listing

Publication Analysis

Top Keywords

quadruple mutation
16
contamination rice
12
rice grains
12
mutation oslpr1/3/4/5
12
promising strategy
8
rice varieties
8
varieties low
8
low accumulation
8
cell wall
8
rice
7

Similar Publications

Article Synopsis
  • Optimizing enzyme thermostability is crucial for protein science and industry, but combining multiple mutations can lead to inactivation, making traditional methods slow and inefficient.
  • Researchers developed an AI-driven method to enhance enzyme thermostability by efficiently recombining beneficial single-point mutations, using data from various mutant groups.
  • After two design rounds, the study achieved 50 combinatorial mutants with 100% success, including one exceptional mutant that significantly increased melting temperature and half-life, while also revealing complex interactions (epistasis) among mutations.
View Article and Find Full Text PDF

Structural plasticity of the coiled-coil interactions in human SFPQ.

Nucleic Acids Res

December 2024

School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia.

The proteins SFPQ (splicing Factor Proline/Glutamine rich) and NONO (non-POU domain-containing octamer-binding protein) are mammalian members of the Drosophila Behaviour/Human Splicing (DBHS) protein family, which share 76% sequence identity in their conserved 320 amino acid DBHS domain. SFPQ and NONO are involved in all steps of post-transcriptional regulation and are primarily located in mammalian paraspeckles: liquid phase-separated, ribonucleoprotein sub-nuclear bodies templated by NEAT1 long non-coding RNA. A combination of structured and low-complexity regions provide polyvalent interaction interfaces that facilitate homo- and heterodimerisation, polymerisation, interactions with oligonucleotides, mRNA, long non-coding RNA, and liquid phase-separation, all of which have been implicated in cellular homeostasis and neurological diseases including neuroblastoma.

View Article and Find Full Text PDF
Article Synopsis
  • - Ferritin is an important protein for iron storage in the brain, but mutations in its light chains can lead to neuroferritinopathy, a rare disease with limited information available.
  • - This study explored how different mutations in ferritin alter its structure and biochemical properties using bioinformatics tools and machine learning models.
  • - The A96T mutation was found to reduce the size of ferritin's entry holes, which may impair its function and result in increased iron release in the brain, potentially contributing to neurodegeneration.
View Article and Find Full Text PDF

Tweaking the redox properties of PpcA from Geobacter metallireducens with protein engineering.

Biochem J

December 2024

Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.

Geobacter's unique ability to perform extracellular electron transfer (EET) to electrodes in microbial fuel cells (MFCs) has sparked the implementation of sustainable production of electrical energy. However, the electrochemical performance of Geobacter's biofilms in MFCs remains challenging to implement industrially. Multiple approaches are being investigated to enhance MFC technologies.

View Article and Find Full Text PDF

Because plants are immobile, they have developed intricate mechanisms to sense and absorb nutrients, adjusting their growth and development accordingly. Sulfur is an essential macroelement, but our understanding of its metabolism and homeostasis is limited. LSU (RESPONSE TO LOW SULFUR) proteins are plant-specific proteins with unknown molecular functions and were first identified during transcriptomic studies on sulfur deficiency in Arabidopsis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!