The optimization of alternative materials in concrete production continues to garner considerable attention in order to meet sustainability goals and supplement natural materials. Portland limestone cement (PLC) and municipal solid waste incineration (MSWI) bottom ash (BA) have been proposed separately as green cement and coarse aggregate supplement in low-strength concrete production, creating sustainable products and alternative disposal scenario for a waste material. This study discusses the impact of advanced ash processing techniques on aggregates and presents the performance of concrete incorporating both of these products with PLC for the first time. Two sources of MSWI BA were investigated, one as-produced (TMR) and one processed with novel advanced metals recovery (AMR). The AMR process reduced total Al content in ash compared to TMR (20,500 vs 17,000 mg/kg), though not aluminum oxide content, as the AMR process targets metallic aluminum. A composition study on both aggregates supports a reduction in ferrous and non-ferrous metals following the AMR process. All control and test mixes met 28-day compressive strength requirements (17 Mpa). Both AMR and TMR MSWI BA-amended concretes yielded compressive strengths below control specimens (no ash) ranging from 17 to 23 MPa, with little to no difference observed dependent on MSWI BA processing. The life-cycle discussion supports benefits deriving from supplementing naturally mined materials and recovering ferrous and nonferrous metals with the AMR process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2024.07.008 | DOI Listing |
Curr Microbiol
January 2025
Molecular Biology Laboratory, Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630003, India.
Antimicrobial resistance (AMR) is an escalating global health concern that results in approximately 700,000 deaths annually owing to drug-resistant infections. It compromises the effectiveness of conventional antibiotics, as well as fundamental medical procedures, such as surgery and cancer treatment. Phytochemicals, natural plant constituents, and biogenic nanoparticles synthesized through biological processes are pharmacological alternatives for supplementing or replacing traditional antibiotics.
View Article and Find Full Text PDFInfection
January 2025
Institute of Population Health Sciences, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County, 35053, Taiwan.
Purpose: Rapid detection of drug resistance in Mycobacterium tuberculosis (Mtb) from clinical samples facilitates the timely provision of optimal treatment regimens for tuberculosis (TB) patients.
Methods: In November, 2023, the WHO released its second catalogue of resistance-conferring mutations in Mtb. Utilizing this information, we developed a single 17-plex PCR assay covering 16 key resistance genes and modified thermo-protection buffer to amplify 30 kbp DNA directly from sputum samples for nanopore sequencing.
Front Antibiot
May 2024
Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi, India.
Introduction: In response to continued public health emergency of antimicrobial resistance (AMR), a significant key strategy is the discovery of novel mycobacterial efflux-pump inhibitors (EPIs) as potential adjuvants in combination drug therapy. Interest in identifying new chemotypes which could potentially synergize with the existing antibiotics and can be deployed as part of a combination therapy. This strategy could delay the emergence of resistance to existing antibiotics and increase their efficacy against resistant strains of mycobacterial species.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Department of Public Health Medicine, Faculty of Medicine, National University of Malaysia, Federal Territory of Kuala Lumpur, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Cheras, Malaysia.
Introduction: Antimicrobial resistance is a global issue, with the World Health Organization identifying it as one of the greatest threats to public health, with an estimated 4.95 million deaths linked to bacterial AMR in 2019. Our study aimed to determine the prevalence of mortality among multidrug-resistant organism (MDRO)-infected patients in state hospitals and major specialist hospitals and to identify risk factors that could be associated with mortality outcomes.
View Article and Find Full Text PDFData Brief
February 2025
Biomedical Optics, Rawalpindi Medical University, Rawalpindi 46000, Pakistan.
is a well-known opportunistic pathogen, responsible for various nosocomial infections. UOL-KIMZ-24 was previously isolated from a clinical specimen, collected from Lahore General Hospital, Lahore (LGH), Pakistan, dated 3rd March, 2022. During the initial screening for antimicrobial susceptibility, the UOL-KIMZ-24 was found a multiple drug resistant (MDR) strain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!