With the rapid advancement of photopolymerization-based 3D printing technology, the volume of PCW has experienced a sharp increase. The potential environmental ramifications of PCW disposal demand careful consideration, especially given its current practice of being incineration alongside MSW. In this study, the TG-MS/FTIR system was carried out to probe the thermogravimetric characteristics and volatile byproducts during combustion. Various product compositions resulting from different mixing ratios of PCW incineration with MSW were investigated. It was observed that fluorene (CH) and triphenylene (CH) produced by PCW combustion 0.52 mg/g and 0.43 mg/g respectively, which are twice as abundant as those generated from normal plastic. When PCW incineration along with MSW, compounds such as naphthalene (CH), cyclohexane (CH), and heptane (CH) were generated in concentrations of 1.25 mg/g, 1.05 mg/g, and 0.95 mg/g respectively, which are at least twice as much as with MSW incineration alone. The incineration of PCW with rubber and textiles resulted in the production of 2.34 mg/g to 3.76 mg/g more PAHs compared to PCW combustion alone. The incineration of PCW with paper resulted in the production of 3.12 mg/g to 5.15 mg/g more heptane, nonane, cyclohexane, pyrene, and anthracene than PCW combustion alone. Incineration of PCW with wood proved to be the cleanest method, with product contents primarily below 0.10 mg/g. When incinerated with food residues or normal plastic, most of the product content remained below 0.05 mg/g. Considering the environmental pollution resulting from PCW combustion, the disposal of PCW warrants careful consideration and management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2024.07.010 | DOI Listing |
Waste Manag
October 2024
School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; Tianjin Key Lab of Biomass Wastes Utilization/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin 300072, China.
Biomedicines
February 2022
Residente de Cuarto año de Ginecología y Obstetricia, Hospital Regional de Alta Especialidad Dr. Gustavo A. Rovirosa Pérez, Villahermosa 86020, Mexico.
Anthropogenic ultrafine particulate matter (UFPM) and industrial and natural nanoparticles (NPs) are ubiquitous. Normal term, preeclamptic, and postconceptional weeks(PCW) 8-15 human placentas and brains from polluted Mexican cities were analyzed by TEM and energy-dispersive X-ray spectroscopy. We documented NPs in maternal erythrocytes, early syncytiotrophoblast, Hofbauer cells, and fetal endothelium (ECs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!