End groups of poly(Lactide-co-glycolide) (PLGA) play an important role in determining the properties of polymers for use in drug delivery systems. For instance, it has been reported that the encapsulation efficiency in PLGA microspheres varies significantly between ester-terminated and acid-terminated PLGA. More importantly, the in-vivo degradation time of such polymer excipients is influenced by the functional end-group of the copolymer used. The end group distribution in PLGA polymers has been studied using electrospray and matrix-assisted laser-desorption/ionization - high-resolution mass spectrometry. In both cases, the application of these methods is typically limited to PLGA having a molecular weight of up to 4 kDa. Carbon-nuclear-magnetic-resonance has also been reported as a method to differentiate and quantify PLGA end groups with a molecular weight up to 136 kDa. However, reported NMR methods take over 12 h per sample, limiting throughput.Cryoprobe NMR can reduce the time required for the process, however such NMR equipment is costly, which makes it unsuitable for the quality control of PLGA. Here, we present a normal-phase liquid chromatography method capable of resolving functionality type distribution (FTD) and, partially, chemical composition distribution (CCD) in commercial PLGA polymers obtained from ring opening polymerization. This method can separate PLGA polymers with a molecular weight of up to 183.0 kDa while also enabling the simultaneous separation of the difference of Lactic acid (LA)/Glycolic acid (GA) ratios. To achieve this, a cross-linked diol column was used with a ternary gradient from HEX to 0.1 % v/v TEA in EA to 0.1 % v/v FA in THF to allow first for the elution of mono-ester terminated PLGA, followed by the di-acid terminated. In addition, a separation of ester-terminated PLGA in the difference of the LA/GA ratio was achieved. This method is expected to aid in understanding the correlation between PLGA's FTD, CCD, and physical properties, facilitating product development and quality control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2024.465137 | DOI Listing |
Sci Rep
December 2024
Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran.
This paper introduces an evidence-based, design-of-experiments (DoE) approach to analyze and optimize drug delivery systems, ensuring that release aligns with the therapeutic window of the medication. First, the effective factors and release data of the system are extracted from the literature and meta-analytically undergo regression modeling. Then, the interaction and correlation of the factors to each other and the release amount are quantitatively assessed.
View Article and Find Full Text PDFInt J Pharm
December 2024
Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA. Electronic address:
Poly(DL-lactide-co-glycolide) (PLGA) and N-methyl-2-pyrrolidone (NMP)-based in situ forming implants are liquid formulations that solidify through phase separation following injection into the body. Drug is dissolved or suspended in the final formulation liquid prior to injection. Depending on the polymers used, the depots formed can deliver drug over different periods of time.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Qingdao Institute of BioEnergy and Bioprocess Technology Chinese Academy of Sciences, Bio-based Materials, Songling Road 189., 266101, Qingdao, CHINA.
The poly(lactic-co-glycolic acid) (PLGA) with completely alternating sequence has attracted growing attention as an ideal candidate in controlled drug delivery. However, the approach to completely alternating PLGA remains a challenge. Herein, we report the successful synthesis of completely alternating PLGA via highly regioselective and stereoselective ring-opening polymerization.
View Article and Find Full Text PDFPharm Dev Technol
December 2024
Professor & Principal, Brilliant Grammar School Educational Society's Group Of Institutions- Integrated Campus (Faculty Of Engineering and Faculty Of Pharmacy), Hyderabad. Abdullapur (V), Abdullapurmet (M), Rangareddy (Dist), Hyderabad-501505, Telangana, India.
The natural flavonoid Quercetin (QT) showed a potential for various health benefits, but its pharmaceutical applications are hindered by low solubility, permeability, and limited bioavailability. This research aimed to synthesize, develop and optimize polylactic acid co-glycolic acid (PLGA) nanobubbles using solvent evaporation method as a sustained delivery system for QT, thus improving stability and bioavailability. Through a four-factor, three-level Box Behnken Design, 29 experimental runs were carried out to optimize QT-PLGA nanobubbles.
View Article and Find Full Text PDFTechnol Cancer Res Treat
December 2024
Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
Objectives: This study developed a drug delivery system (DDS) using folic acid (FA)-functionalized chitosan (CS) and poly (lactic-co-glycolic acid) (PLGA) nanocarriers for targeted sodium butyrate (NB) delivery to leukemia cells (NALM6). The goal was to enhance NB's therapeutic efficacy while reducing its cytotoxicity to non-malignant cells.
Methods: FA-CS-PLGA nanocarriers were synthesized and characterized using Fourier-transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), zeta potential analysis, transmission electron microscopy (TEM), and thermogravimetric analysis (TGA).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!