In the early twenty-first century, extensive research has been conducted on geckos' ability to climb vertical walls with the advancement of microscopy technology. Unprecedented studies and developments have focused on the adhesion mechanism, structural design, preparation methods, and applications of bioinspired dry adhesives. Notably, strong adhesion that adheres to both the principles of contact splitting and stress uniform distribution has been discovered and proposed. The increasing popularity of flexible electronic skins, soft crawling robots, and smart assembly systems has made switchable adhesion properties essential for smart adhesives. These adhesives are designed to be programmable and switchable in response to external stimuli such as magnetic fields, thermal changes, electrical signals, light exposure as well as mechanical processes. This paper provides a comprehensive review of the development history of bioinspired dry adhesives from achieving strong adhesion to realizing switchable adhesion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1748-3190/ad62cf | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!