Overcoming Temperature Limits in the Optical Cooling of Solids Using Light-Dressed States.

Phys Rev Lett

School of Physics, Trinity College Dublin, Dublin 2, Ireland and Trinity Quantum Alliance, Unit 16, Trinity Technology and Enterprise Centre, Pearse Street, Dublin 2, Ireland.

Published: June 2024

Laser cooling of solids currently has a temperature floor of 50-100 K. We propose a method that could overcome this using defects, such as diamond color centers, with narrow electronic manifolds and bright optical transitions. It exploits the dressed states formed in strong fields which extend the set of phonon transitions and have tunable energies. This allows an enhancement of the cooling power and diminishes the effect of inhomogeneous broadening. We demonstrate these effects theoretically for the silicon vacancy and the germanium vacancy, and discuss the role of background absorption, phonon-assisted emission, and nonradiative decay.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.132.266901DOI Listing

Publication Analysis

Top Keywords

cooling solids
8
overcoming temperature
4
temperature limits
4
limits optical
4
optical cooling
4
solids light-dressed
4
light-dressed states
4
states laser
4
laser cooling
4
solids currently
4

Similar Publications

Metallic Bonding in Close-Packed Structures: Structural Frustration from a Hidden Gauge Symmetry.

Phys Rev Lett

December 2024

Department of Physics, Brock University, St. Catharines, Ontario L2S 3A1, Canada.

Based on its simple valence electron configuration, we may expect lithium to have straightforward physical properties that are easily explained. However, solid lithium, when cooled below 77 K, develops a complex structure that has been debated for decades. A close parallel is found in sodium below 36 K where the crystal structure still remains unresolved.

View Article and Find Full Text PDF

Structural and magnetic phase transitions in EuLaFe(BO) (x = 0, 0.18).

Acta Crystallogr B Struct Sci Cryst Eng Mater

February 2025

Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russian Federation.

The crystal structures and hyperfine magnetic parameters of EuFe(BO) and mixed EuLaFe(BO) were studied over a wide temperature range in order to analyze correlations of the structural and magnetic features and the phase transitions in multiferroic compounds of the rare-earth iron borate family. The chemical compositions of the crystals are reported from X-ray fluorescence analysis. The crystal structures of EuFe(BO) and EuLaFe(BO) were determined using single-crystal X-ray diffraction in the temperature range 25-500 K.

View Article and Find Full Text PDF

Charge-carrier compensation in topological semimetals amplifies the Nernst signal and simultaneously degrades the Seebeck coefficient. In this study, we report the simultaneous achievement of both a large Nernst signal and an unsaturating magneto-Seebeck coefficient in a topological nodal-line semimetal TaAs single crystal. The unique dual-high transverse and longitudinal thermopowers are attributed to multipocket synergy effects: the combination of a strong phonon-drag effect and the two overlapping highly dispersive conduction and valence bands with electron-hole compensation and high mobility, promising a large Nernst effect; the third Dirac band causes a large magneto-Seebeck effect.

View Article and Find Full Text PDF

Barocaloric (BC) materials offer the potential for highly energy-efficient refrigeration by generating heat absorption through the effect of pressure on a solid-solid phase transition. However, very few of the known materials have the required phase transition in the temperature regions necessary for domestic refrigeration or air conditioning. We introduce organic ionic plastic crystals (OIPCs) as a new family of BC materials.

View Article and Find Full Text PDF

Phase evolutions of sodium layered oxide cathodes during thermal fluctuations.

Chem Commun (Camb)

January 2025

College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.

Layered transition metal oxide (NaTMO) cathodes are considered highly appropriate for the practical applications of sodium-ion batteries (SIBs) owing to their facile synthesis and high theoretical capacity. Generally, the phase evolution behaviors of NaTMO during solid-state reactions at high temperature closely related to their carbon footprint, prime cost, and the eventual electrochemical properties, while the thermal stability in various desodiated states associated with wide temperature fluctuations are extremely prominent to the electrochemical properties and safety of SIB devices. Therefore, in this review, the influences of sintering conditions such as pyrolysis temperature, soaking time, and cooling rates on the phase formation patterns of NaTMO are summarized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!