(TaSe_{4})_{2}I is a well-studied quasi-one-dimensional compound long-known to have a charge-density wave (CDW) transition around 263 K. We argue that the critical fluctuations of the pinned CDW order parameter near the transition can be inferred from the resistance noise on account of their coupling to the dissipative normal carriers. Remarkably, the critical fluctuations of the CDW order parameter are slow enough to survive the thermodynamic limit and dominate the low-frequency resistance noise. The noise variance and relaxation time show rapid growth (critical opalescence and critical slowing down) within a temperature window of ϵ≈±0.1, where ϵ is the reduced temperature. This is very wide but consistent with the Ginzburg criterion. We further show that this resistance noise can be quantitatively used to extract the associated critical exponents. Below |ϵ|≲0.02, we observe a crossover from mean-field to a fluctuation-dominated regime with the critical exponents taking anomalously low values. The distribution of fluctuations in the critical transition region is skewed and strongly non-Gaussian. This non-Gaussianity is interpreted as the breakdown of the validity of the central limit theorem as the diverging coherence volume becomes comparable to the macroscopic sample size. The large magnitude critical fluctuations observed over an extended temperature range, as well as the crossover from the mean-field to the fluctuation-dominated regime highlight the role of the quasi-one-dimensional character in controlling the phase transition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.132.266504 | DOI Listing |
Matrix Biol Plus
February 2025
Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA.
Schwann cells (SCs) hold key roles in axonal function and maintenance in the peripheral nervous system (PNS) and are a critical component to the regeneration process following trauma. Following PNS trauma, SCs respond to both physical and chemical signals to modify phenotype and assist in the regeneration of damaged axons and extracellular matrix (ECM). There is currently a lack of knowledge regarding the SC response to dynamic, temporal changes in the ECM brought on by swelling and the development of scar tissue as part of the body's wound-healing process.
View Article and Find Full Text PDFBackground: The number of individuals living alone with dementia is increasing throughout the world, and they have unique needs that are poorly understood. The aim of this integrative review was to understand the characteristics, needs, and perspectives of individuals living alone with dementia as well as the available community resources to guide future research and clinical practice.
Methods: Electronic (PubMed, CINAHL, and PsycINFO) and manual searches were utilized to identify articles using MeSH terms.
ACS Omega
January 2025
Unconventional Computing Laboratory, University of the West of England, Coldharbour Ln, Stoke Gifford, Bristol BS16 1QY, U.K.
Sea urchins display complex bioelectric activity patterns, even with their decentralized nervous system. Electrophysiological recordings showed distinct spiking patterns. The baseline potential was about 8.
View Article and Find Full Text PDFEnviron Res
January 2025
Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil. Electronic address:
This study provides comprehensive overview of the current level, sources and human exposure risk to hazardous polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs) in South American outdoor air. Research documents were obtainable for only 6 countries within the target period (2014 - 2024). For all contaminants, urban concentrations exceeded that of rural/remote locations.
View Article and Find Full Text PDFBiomed Tech (Berl)
December 2024
66284 School of Design & Art, Shenyang Aerospace University, Shenyang, China.
Objectives: The actions and decisions of pilots are directly related to aviation safety. Therefore, understanding the neurological and cognitive processes of pilots during flight is essential. This study aims to investigate the EEG signals of pilots to understand the characteristic changes during the climb and descent stages of flight.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!