Theoretical and experimental studies suggest that both Hermitian and non-Hermitian quasicrystals show localization due to the fractal spectrum and to the transition to diffusive bands via exceptional points, respectively. Here, we present an experimental study of a dodecagonal photonic quasicrystal based on electromagnetically induced transparency in a Rb vapor cell. First, we observe the suppression of the wave packet expansion in the Hermitian case. We then discover a new regime, where increasing the non-Hermiticity leads to delocalization, demonstrating that the behavior in non-Hermitian quasicrystals is richer than previously thought.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.132.263801DOI Listing

Publication Analysis

Top Keywords

photonic quasicrystal
8
non-hermitian quasicrystals
8
non-hermitian delocalization
4
delocalization two-dimensional
4
two-dimensional photonic
4
quasicrystal theoretical
4
theoretical experimental
4
experimental studies
4
studies hermitian
4
hermitian non-hermitian
4

Similar Publications

Observation of Thouless pumping of light in quasiperiodic photonic crystals.

Proc Natl Acad Sci U S A

November 2024

State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.

Topological transport is determined by global properties of physical media where it occurs and is characterized by quantized amounts of adiabatically transported quantities. Discovered for periodic potential, it was also explored in disordered and discrete quasiperiodic systems. Here, we report on experimental observation of pumping of a light beam in a genuinely continuous incommensurate photorefractive quasicrystal emulated by its periodic approximants.

View Article and Find Full Text PDF

Photonic modes exhibiting a polarization winding akin to a vortex possess an integer topological charge. Lasing with topological charge 1 or 2 can be realized in periodic lattices of up to six-fold rotational symmetry-higher order charges require symmetries not compatible with any two-dimensional Bravais lattice. Here, we experimentally demonstrate lasing with topological charges as high as -5, +7, -17 and +19 in quasicrystals.

View Article and Find Full Text PDF

Theoretical and experimental studies suggest that both Hermitian and non-Hermitian quasicrystals show localization due to the fractal spectrum and to the transition to diffusive bands via exceptional points, respectively. Here, we present an experimental study of a dodecagonal photonic quasicrystal based on electromagnetically induced transparency in a Rb vapor cell. First, we observe the suppression of the wave packet expansion in the Hermitian case.

View Article and Find Full Text PDF

Dephasing-Induced Mobility Edges in Quasicrystals.

Phys Rev Lett

June 2024

Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, I-20133 Milano, Italy and IFISC (UIB-CSIC), Instituto de Fisica Interdisciplinar y Sistemas Complejos, E-07122 Palma de Mallorca, Spain.

Mobility edges (ME), separating Anderson-localized states from extended states, are known to arise in the single-particle energy spectrum of certain one-dimensional lattices with aperiodic order. Dephasing and decoherence effects are widely acknowledged to spoil Anderson localization and to enhance transport, suggesting that ME and localization are unlikely to be observable in the presence of dephasing. Here it is shown that, contrary to such a wisdom, ME can be created by pure dephasing effects in quasicrystals in which all states are delocalized under coherent dynamics.

View Article and Find Full Text PDF

Temperature-dependent x-ray photon correlation spectroscopy (XPCS) measurements are reported for a binary diblock-copolymer blend that self-assembles into an aperiodic dodecagonal quasicrystal and a periodic Frank-Kasper σ phase approximant. The measured structural relaxation times are Bragg scattering wavevector independent and are 5 times faster in the dodecagonal quasicrystal than the σ phase, with minimal temperature dependence. The underlying dynamical relaxations are ascribed to differences in particle motion at the grain boundaries within each of these tetrahedrally close-packed assemblies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!