We report a theoretical description of novel spin-orbit torque components emerging in two-dimensional Dirac materials with broken inversion symmetry. In contrast to usual metallic interfaces where fieldlike and dampinglike torque components are competing, we find that an intrinsic dampinglike torque which derives from all Fermi-sea electrons can be simultaneously enhanced along with the fieldlike component. Additionally, hitherto overlooked torque components unique to Dirac materials emerge from the coupling between spin and pseudospin angular momenta, leading to spin-pseudospin entanglement. These torques are found to be resilient to disorder and could enhance the magnetic switching performance of nearby magnets.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.132.266301DOI Listing

Publication Analysis

Top Keywords

dirac materials
12
torque components
12
dampinglike torque
8
emerging spin-orbit
4
spin-orbit torques
4
torques low-dimensional
4
low-dimensional dirac
4
materials report
4
report theoretical
4
theoretical description
4

Similar Publications

We present a comprehensive analysis of the optical attributes of graphene sheets with charge carriers residing on a curved substrate. In particular, we focus on the fascinating case of Beltrami geometry and provide an explicit parametrization for this curved two-dimensional surface. By employing the massless Dirac description that is characteristic of graphene, we investigate the impact of the curved geometry on the optical properties within the sample.

View Article and Find Full Text PDF

Solid electrolytes (SEs) are crucial for advancing next-generation rechargeable battery technologies, but their commercial viability is partially limited by expensive precursors, unscalable synthesis, or low ionic conductivity. Lithium tetrahaloaluminates offer an economical option but exhibit low Li conductivities with high activation energy barriers. This study reports the synthesis of lithium aluminum chalcohalide (LiAlClS) using inexpensive precursors one-step mechanochemical milling.

View Article and Find Full Text PDF

Transfer matrix in graphene-like materials: the case of silicene and transition metal dichalcogenides.

J Phys Condens Matter

January 2025

Unidad Académica de Ciencia y Tecnología de la Luz y la Materia, Universidad Autónoma de Zacatecas, Circuito Marie Curie S/N, Parque de Ciencia y Tecnología QUANTUM Ciudad del Conocimiento, 98160 Zacatecas, Zacatecas, Mexico.

The fundamental properties of 1D Dirac-like problems in silicene and transition metal dichalcogenides (TMDs) are derived with the use of the transfer matrix. Analytic expressions for the transmission coefficient and the bound states are obtained for these 2D materials. The continuity between states of perfect transmission and bound states is also addressed in silicene and TMDs.

View Article and Find Full Text PDF

The fundamental characteristics of collective interactions in topological band structures can be revealed by the exploration of charge screening in topological materials. In particular, distinct anisotropic screening behaviors are predicted to occur in Dirac nodal line semimetals (DNLSMs) due to their peculiar anisotropic low-energy dispersion. Despite the recent extensive theoretical research, experimental observations of exotic charge screening in DNLSMs remain elusive, which is partly attributed to the coexisting trivial bands near the Fermi energy.

View Article and Find Full Text PDF
Article Synopsis
  • Discovering the optoelectronic properties of transition metal dichalcogenides (TMDCs) is crucial for next-gen electronic devices, with a focus on the impact of external strains on Dirac states, an area still being explored.
  • A comprehensive database of 90 TMDC types was created, revealing that 27.3% exhibit Dirac materials with three distinct types of Dirac cones, influenced by external strain-induced electron localization.
  • The study shows that TMDCs from tellurides with 1H phase enhance the formation of Dirac cones under stress, leading to metallic properties and increased charge transport, ultimately offering insights for the development of TMDCs in superconducting and optoelectronic applications.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!