Weyl fermions are hypothetical chiral particles that can also manifest as excitations near three-dimensional band crossing points in lattice systems. These quasiparticles are subject to the Nielsen-Ninomiya "no-go" theorem when placed on a lattice, requiring the total chirality across the Brillouin zone to vanish. This constraint results from the topology of the (orientable) manifold on which they exist. Here, we ask to what extent the concepts of topology and chirality of Weyl points remain well defined when the underlying manifold is nonorientable. We show that the usual notion of chirality becomes ambiguous in this setting, allowing for systems with a nonzero total chirality. This circumvention of the Nielsen-Ninomiya theorem stems from a generic discontinuity of the vector field whose zeros are Weyl points. Furthermore, we discover that Weyl points on nonorientable manifolds carry an additional Z_{2} topological invariant which satisfies a different no-go theorem. We implement such Weyl points by imposing a nonsymmorphic symmetry in the momentum space of lattice models. Finally, we experimentally realize all aspects of their phenomenology in a photonic platform with synthetic momenta. Our work highlights the subtle but crucial interplay between the topology of quasiparticles and of their underlying manifold.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.132.266601 | DOI Listing |
Mater Horiz
January 2025
Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, 2500, Australia.
Recently, the emergence of two-dimensional (2D) multiferroic materials has opened a new perspective for exploring topological states. However, instances of tuning topological phase transitions through ferroelectric (FE) polarization in 2D ferromagnetic (FM) materials are relatively rare. Here, we found that 11 single layer (SL) materials, named the MMGeX family, possess both FE and FM properties.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, People's Republic of China.
Magnetic Weyl semimetals (WSMs) have recently attracted much attention due to their potential in realizing strong anomalous Hall effects. Yet, how to design such systems remains unclear. Based on first-principles calculations, we show here that the ferromagnetic half-metallic compound InCoSehas several pairs of Weyl points and is hence a good candidate for magnetic WSM.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India.
Weyl semimetals are a novel class of topological materials with unique electronic structures and distinct properties. HfRhGe stands out as a noncentrosymmetric Weyl semimetal with unconventional superconducting characteristics. Using muon-spin rotation and relaxation (µSR) spectroscopy and thermodynamic measurements, a fully gapped superconducting state is identified in HfRhGe that breaks time-reversal symmetry at the superconducting transition.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan.
For over a century, the Hall effect, a transverse effect under an out-of-plane magnetic field or magnetization, has been a cornerstone for magnetotransport studies and applications. Modern theoretical formulation based on the Berry curvature has revealed the potential that even an in-plane magnetic field can induce an anomalous Hall effect, but its experimental demonstration has remained difficult due to its potentially small magnitude and strict symmetry requirements. Here, we report observation of the in-plane anomalous Hall effect by measuring low-carrier density films of magnetic Weyl semimetal EuCd_{2}Sb_{2}.
View Article and Find Full Text PDFRep Prog Phys
December 2024
Department of Physics, The University of Hong Kong, The University of Hong Kong, Pokfulam, Hong Kong, Hong Kong, 999077, HONG KONG.
Spinless systems exhibit unique topological characteristics compared to spinful ones, stemming from their distinct algebra. Without chiral interactions typically linked to spin, an intriguing yet unexplored interplay between topological and structural chirality may be anticipated. Here we discover spinless topological chiralities solely from structural chiralities that lie in the 3D spatial patterning of structureless units, exemplified using two types of twisted graphite systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!