Understanding Central Spin Decoherence Due to Interacting Dissipative Spin Baths.

Phys Rev Lett

Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA.

Published: June 2024

We propose a new approach to simulate the decoherence of a central spin coupled to an interacting dissipative spin bath with cluster-correlation expansion techniques. We benchmark the approach on generic 1D and 2D spin baths and find excellent agreement with numerically exact simulations. Our calculations show a complex interplay between dissipation and coherent spin exchange, leading to increased central spin coherence in the presence of fast dissipation. Finally, we model near-surface nitrogen-vacancy centers in diamond and show that accounting for bath dissipation is crucial to understanding their decoherence. Our method can be applied to a variety of systems and provides a powerful tool to investigate spin dynamics in dissipative environments.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.132.250401DOI Listing

Publication Analysis

Top Keywords

central spin
12
spin
8
interacting dissipative
8
dissipative spin
8
spin baths
8
understanding central
4
spin decoherence
4
decoherence interacting
4
baths propose
4
propose approach
4

Similar Publications

Manganese-based materials are essential for developing safe, cost-effective, and environmentally sustainable rechargeable batteries, which are critical for advancing clean energy technologies. However, the high spin state of the Mn cation triggers a pronounced Jahn-Teller effect and phase transformations during cycling, leading to structural instability and reduced electrochemical performance of the Mn-based cathodes. This review provides a fundamental understanding of the Jahn-Teller effect, highlights recent strategies to mitigate the high spin state of Mn, and offers insights into future research directions aimed at overcoming the Jahn-Teller effect to enhance the performance of next-generation Mn-based cathodes for rechargeable batteries.

View Article and Find Full Text PDF

Resonant Quantum Magnetodielectric Effect in Multiferroic Metal-Organic Framework [CHNH]Co(HCOO).

Small

December 2024

Department of Applied Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, 401331, China.

The observation of both resonant quantum tunneling of magnetization (RQTM) and resonant quantum magnetodielectric (RQMD) effect in the perovskite multiferroic metal-organic framework [CHNH]Co(HCOO).is reported. An intrinsic magnetic phase separation emerges at low temperatures due to the hydrogen-bond-modified long-range super-exchange interaction, leading to the coexistence of canted antiferromagnetic order and single-ion (Co) magnets.

View Article and Find Full Text PDF

Pd(0)/Pd(II) Electromerism Triggered by Lewis Base Coordination to a Redox-Active Silicon Z-Type Ligand.

Angew Chem Int Ed Engl

December 2024

Universität Heidelberg: Universitat Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, 69120, Heidelberg, GERMANY.

Electromerism (aka. valence tautomerism) corresponds to the switching of electronic distributions between redox-active ligands and central elements. While this phenomenon is well established for several transition metals, the Pd(0)/Pd(II) couple could not yet be involved due to the high energy of the Pd(0) state.

View Article and Find Full Text PDF

Memristors and magnetic tunnel junctions are showing great potential in data storage and computing applications. A magnetoelectrically coupled memristor utilizing electron spin and electric field-induced ion migration can facilitate their operation, uncover new phenomena, and expand applications. In this study, devices consisting of Pt/(LaCoO/SrTiO)/LaCoO/Nb:SrTiO (Pt/(LCO/STO)/LCO/NSTO) are engineered using pulsed laser deposition to form the LCO/STO superlattice layer, with Pt and NSTO serving as the top and bottom electrodes, respectively.

View Article and Find Full Text PDF

Effect of carotid artery stenting on cognitive function in patients with asymptomatic carotid artery stenosis, a multimodal magnetic resonance study.

Magn Reson Imaging

December 2024

Department of Neurology, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China. Electronic address:

Introduction: More and more evidence suggesting that internal carotid artery stenosis is not only a risk factor for ischemic stroke but also for cognitive impairments. Hypoperfusion and silent micro emboli have been reported as the pathophysiological mechanisms causing cognitive impairment. The effect of carotid artery stenting (CAS) on cognitive function varied from study to study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!