Rationale: Autoimmune glial fibrillary acidic protein (GFAP) astrocytopathy is a rare autoimmune disease of the central nervous system that affects the meninges, brain, spinal cord, and optic nerves. GFAP astrocytopathy can coexist with a variety of antibodies, which is known as overlap syndrome. Anti-NMDAR-positive encephalitis overlap syndrome has been reported; however, encephalitis overlap syndrome with both anti-NMDAR and sulfatide-IgG positivity has not been reported.

Patient Concerns: The patient was a 50-year-old male who was drowsy and had chills and weak limbs for 6 months. His symptoms worsened after admission to our hospital with persistent high fever, dysphoria, gibberish, and disturbance of consciousness. Positive cerebrospinal fluid NMDA, GFAP antibodies, and serum sulfatide antibody IgG were positive.

Diagnoses: Autoimmune GFAP astrocytopathy with anti-NMDAR and sulfatide-IgG-positive encephalitis overlap syndrome.

Interventions: In addition to ventilator support and symptomatic supportive treatment, step-down therapy with methylprednisolone (1000 mg/d, halved every 3 days) and pulse therapy with human immunoglobulin (0.4 g/(kg d) for 5 days) were used.

Outcomes: After 6 days of treatment, the patient condition did not improve, and the family signed up to give up the treatment and left the hospital.

Conclusions: Patients with autoimmune GFAP astrocytopathy may be positive for anti-NMDAR and sulfatide-IgG, and immunotherapy may be effective in patients with severe conditions.

Lessons: Autoimmune GFAP astrocytopathy with nonspecific symptoms is rarely reported and is easy to be missed and misdiagnosed. GFAP astrocytopathy should be considered in patients with fever, headache, disturbance of consciousness, convulsions, and central infections that do not respond to antibacterial and viral agents. Autoimmune encephalopathy-related antibody testing should be performed as soon as possible, early diagnosis should be confirmed, and immunomodulatory therapy should be administered promptly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11245231PMC
http://dx.doi.org/10.1097/MD.0000000000038983DOI Listing

Publication Analysis

Top Keywords

gfap astrocytopathy
24
encephalitis overlap
16
overlap syndrome
16
autoimmune gfap
12
autoimmune glial
8
glial fibrillary
8
fibrillary acidic
8
acidic protein
8
astrocytopathy anti-nmdar
8
anti-nmdar sulfatide-igg-positive
8

Similar Publications

Article Synopsis
  • This study investigated how adenosine deaminase (ADA) levels in cerebrospinal fluid (CSF) relate to different neurological disorders.
  • Five specific diseases showed significantly higher CSF ADA levels compared to a noninflammatory control group, with tuberculous meningitis (TBM) showing the highest increase.
  • Strong positive correlations were found between CSF ADA levels and several other laboratory parameters, suggesting that elevated ADA levels might indicate T-cell hyperactivation in the central nervous system.
View Article and Find Full Text PDF

Virus encephalitis (VE), recognized as one of the common kinds of central nervous system (CNS) diseases after virus infection, has a surprising correlation with autoimmune encephalitis (AE) when autoimmune antibodies emerge in cerebrospinal fluid (CSF) or serum. Herpes simplex virus and Epstein-Barr virus are the most critical agents worldwide. By molecular mimicry, herpes viruses can invade the brain directly or indirectly.

View Article and Find Full Text PDF

Objective: Autoimmune glial fibrillary acidic protein astrocytopathy (GFAP-A) is a novel steroid sensitive autoimmune disease, without a diagnostic consensus. The purpose of this study was to improve early GFAP-A diagnosis by increasing awareness of key clinical characteristics and imaging manifestations.

Methods: Medical records of 13 patients with anti-GFAP antibodies in serum or cerebrospinal fluid (CSF) were reviewed for cross-sectional and longitudinal analysis of clinical and magnetic resonance imaging (MRI) findings.

View Article and Find Full Text PDF

Small RNA sequencing of differentiated astrocytoma exposed to NMOSD patient sera reveals perturbations in neurodegenerative signaling.

Exp Cell Res

December 2024

Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, 700 064, West Bengal, India. Electronic address:

The signaling pathways behind severe astrocytic lysis with Aquaporin4 auto-antibody (AQP4-IgG) seropositivity, and reactive astrocytosis with myelin oligodendrocyte glycoprotein auto-antibody (MOG-IgG) seropositivity, remain largely unexplored in Neuromyelitis optica spectrum disorder (NMOSD), while almost no molecular details being known about double-seronegative (DN) patients. Recent discovery of glial fibrillary acidic protein (GFAP) in DN NMOSD patients' cerebrospinal fluid, akin to AQP4-IgG + ve cases, suggests astrocytopathy. Here, we aim to study small non coding RNA (sncRNA) signature alterations in astrocytes exposed to AQP4-IgG + ve and MOG-IgG + ve patient sera, and their potential resemblance with DN-NMOSD.

View Article and Find Full Text PDF

Spectrum of Clinical and Imaging Features of Children With GFAP Astrocytopathy.

Neurol Neuroimmunol Neuroinflamm

January 2025

From the Departments of Pediatric Neurology (S.S., A.B., K.R.), and Pediatric Radiology (A.P., R.C.), Children's Hospital Datteln, Witten/Herdecke University, Datteln, Germany; Consultant Child Neurologist and Epileptologist at Neoclinic Children's Hospital (V.J.), Jaipur, India; Department of Pediatric Neurology (T.K.), Children's Hospital Datteln, University Witten/Herdecke; Faculty of Health (T.K.), Department of Psychology and Psychotherapy, Chair of Personality Psychology and Diagnosis, Witten/Herdecke University; Center for Paediatric and Adolescent Medicine (U.D.), University Medical Clinic, Mainz; University Children's Hospital Regensburg (KUNO) (T.G.), Hospital St. Hedwig of the Order of St. John, University of Regensburg; Department of Pediatric Neurology (A.N.), VAMED Klinik Geesthacht; Department of Pediatrics (A.N.), University Medical Center Hamburg-Eppendorf; Department of Pediatric Neurology (C.L.-N.), Mutterhaus der Borromäerinnen, Trier; Department of Pediatric Intensive Care (R.A.-H.), University Children's Hal Marburg; Department of Pediatric Neurology (M.F.-B.), Saarland University Medical Center, Homburg/Saar, Germany; Assistance Publique-Hôpitaux de Paris (K.D.), Paris-Saclay University Hospitals, Bicêtre Hospital, Pediatric Neurology Department, National Referral Center for Rare Inflammatory and Auto-immune Brain and Spinal Diseases, Paris Saclay University, France; Neuroimmunology Unit (T.A.), in Sant Joan de Déu Children's Hospital, Esplugues de Llobregat, Barcelona; Neuroimmunology Program (T.A., G.O.-C.), Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, University of Barcelona; Neurology Unit (G.O.-C.), Hospital Parc Taulí de Sabadell, Sabadell, Barcelona, Spain; Neuroimmunology Laboratory (S.K.), Amrita Institute of Medical Sciences, School of Medicine, Amrita University, Kochi, India; Department of Pediatrics (A.K.); Center for Rare Diseases (A.K.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany; Department of Pediatric Neurology (H.M.); Pediatric Neurology Institute (A.F.-V.), Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center; Sackler Faculty of Medicine, Tel Aviv University; Institute of Pediatric Neurology (E.G.-C.), Schneider Children's Medical Center of Israel, Petah Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel; University Children's Hospital Oldenburg (H.L.), Department of Neuropediatrics, Oldenburg; Neuropediatric Unit (A.H., R.W.), Karolinska University Hospital and Karolinska Institute Stockholm, Sweden; and Institute of Clinical Chemistry (J.D., F.L.), Neuroimmunology Unit and Department of Neurology, University Medical Center Schleswig-Holstein Campus, Kiel, Germany.

Article Synopsis
  • This study investigates the clinical and MRI characteristics of children with autoimmune GFAP astrocytopathy, revealing limited data compared to what is known in adults.
  • Researchers analyzed cases of 15 children from various clinical centers, finding common symptoms like acute encephalitis and meningitis, and specific MRI patterns in all cases.
  • The findings suggest that GFAP antibodies lead to distinct clinical and imaging features, emphasizing the need for testing in pediatric patients with similar symptoms, especially those with brainstem involvement.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!