Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Combining atomic force microscopy (AFM) with other optical microscopic techniques is pivotal in nanoscale investigations, particularly leveraging the surface-sensitive properties of total internal reflection fluorescence microscopy (TIRF). A novel design that integrates AFM with a multi-wavelength TIRF is displayed, providing simultaneous fluorescence imaging and spectral acquisition capabilities. We elaborate on the considerations in the instrument design process and demonstrate the performance and potential applications of the instrument through fluorescence imaging and spectroscopy testing of individual nanoparticles. This AFM and TIRF correlated system (AFM-TIRF) emerges as a promising option for single-molecule fluorescence studies, enabling simultaneous manipulation and detection of fluorescence from individual molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0210704 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!