A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exploring the Genetic Heterogeneity of Alzheimer's Disease: Evidence for Genetic Subtypes. | LitMetric

Background: Alzheimer's disease (AD) exhibits considerable phenotypic heterogeneity, suggesting the potential existence of subtypes. AD is under substantial genetic influence, thus identifying systematic variation in genetic risk may provide insights into disease origins.

Objective: We investigated genetic heterogeneity in AD risk through a multi-step analysis.

Methods: We performed principal component analysis (PCA) on AD-associated variants in the UK Biobank (AD cases = 2,739, controls = 5,478) to assess structured genetic heterogeneity. Subsequently, a biclustering algorithm searched for distinct disease-specific genetic signatures among subsets of cases. Replication tests were conducted using the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset (AD cases = 500, controls = 470). We categorized a separate set of ADNI individuals with mild cognitive impairment (MCI; n = 399) into genetic subtypes and examined cognitive, amyloid, and tau trajectories.

Results: PCA revealed three distinct clusters ("constellations") driven primarily by different correlation patterns in a region of strong LD surrounding the MAPT locus. Constellations contained a mixture of cases and controls, reflecting disease-relevant but not disease-specific structure. We found two disease-specific biclusters among AD cases. Pathway analysis linked bicluster-associated variants to neuron morphogenesis and outgrowth. Disease-relevant and disease-specific structure replicated in ADNI, and bicluster 2 exhibited increased cerebrospinal fluid p-tau and cognitive decline over time.

Conclusions: This study unveils a hierarchical structure of AD genetic risk. Disease-relevant constellations may represent haplotype structure that does not increase risk directly but may alter the relative importance of other genetic risk factors. Biclusters may represent distinct AD genetic subtypes. This structure is replicable and relates to differential pathological accumulation and cognitive decline over time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11636402PMC
http://dx.doi.org/10.3233/JAD-231252DOI Listing

Publication Analysis

Top Keywords

genetic heterogeneity
12
alzheimer's disease
12
genetic subtypes
12
genetic risk
12
genetic
10
disease-relevant disease-specific
8
disease-specific structure
8
cognitive decline
8
risk
5
structure
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!