The pursuit of increased efficiency of photoelectric energy conversion through optimized semiconductor structures remains highly competitive, with current results yet to align with broad expectations. In this study, we discover a significant enhancement in photocurrent performance of a p-3C-SiC nanothin film on p-Si/n-Si double junction (DJ) heterostructure that integrates p-3C-SiC/p-Si heterojunction and p-Si/n-Si homojunction. The vertical photocurrent (VPC) and vertical photoresponsivity exhibit a substantial enhancement in the DJ heterostructure, surpassing by a maximum of 43-fold compared to the p-3C-SiC/n-Si single junction (SJ) counterpart. The p-3C-SiC layer and n-Si substrate of the two heterostructures have similar material and geometrical properties. More importantly, the fabrication costs for the DJ and SJ heterostructure devices are comparable. Our results demonstrate a significant potential for using DJ devices in energy harvesters, micro/nano electromechanical systems, and sensing applications. This research may also lead to the creation of advanced optoelectronic devices using DJ structures, where employing various semiconductor materials to achieve exceptional performance through the application of the concept and theoretical model described in this work.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c03875DOI Listing

Publication Analysis

Top Keywords

energy conversion
8
p-3c-sic nanothin
8
nanothin film
8
film p-si/n-si
8
p-si/n-si double
8
double junction
8
highly efficient
4
efficient photon
4
photon energy
4
conversion ultrasensitive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!