The use of insect cell line Sf21 for ecotoxicity testing.

Ecotoxicology

School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.

Published: October 2024

AI Article Synopsis

  • Insect cell lines, specifically Sf21 cells, are being explored for their potential in ecotoxicity testing, which hasn’t received much focus compared to other applications.
  • The study demonstrated that Sf21 cells are sensitive to the fungicides Propiconazole and CuSO, with significant effects noted at specific concentrations, indicating their potential as an acute toxicity testing tool.
  • The findings showed that a 0.5% concentration of the solvent DMSO did not negatively impact cell viability, suggesting that Sf21 cells can be effectively used in toxicological assessments.

Article Abstract

Insect cell lines are finding utility in many areas of biology, but their application as an in vitro tool for ecotoxicity testing has been given less attention. Our study aimed to demonstrate the utility and sensitivity of Sf21 cells to commonly used fungicides: Propiconazole and CuSO, as well as dimethyl sulphoxide (DMSO) an industrial solvent. Sf21 cells were readily cultured from frozen stocks in 3-4 days and showed utility as an invertebrate in vitro acute toxicity test. The data showed the threshold levels of cell survivability against propiconazole and CuSO. The EC values were 135.1 μM and 3.31 mM respectively. The LOAEL (lowest observed adverse effect level) was ≈ 1 μM for propiconazole and ≈ 10 μM for CuSO. Culturing of Sf21 cells in media containing the solvent DMSO showed that 0.5% DMSO concentration did not effect cell viability. Sf21 cells are sensitive and useful as a robust ecologically relevant screening tool for acute toxicity testing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11399169PMC
http://dx.doi.org/10.1007/s10646-024-02781-9DOI Listing

Publication Analysis

Top Keywords

sf21 cells
16
insect cell
8
ecotoxicity testing
8
propiconazole cuso
8
acute toxicity
8
sf21
5
cell sf21
4
sf21 ecotoxicity
4
testing insect
4
cell lines
4

Similar Publications

Article Synopsis
  • There's an urgent need to boost the effectiveness of seasonal influenza vaccines, with recombinant hemagglutinin showing potential benefits over traditional methods.
  • In a study, two adjuvants (Advax-CpG55.2 and alum-CpG55.2) were tested to see if they could improve the immune response of a quadrivalent influenza vaccine (QIV) in mice.
  • Results showed that the adjuvanted vaccines led to much higher levels of protective antibodies and significantly reduced illness in mice infected with the H1N1 strain, suggesting that this approach could be a better alternative for seasonal flu vaccinations.
View Article and Find Full Text PDF

RNAi-mediated knockdown of HcCAT2 depresses the adaptive capacity of Hyphantria cunea larvae to cytisine and coumarin.

Int J Biol Macromol

January 2025

School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China. Electronic address:

The diversity of host plants is an important reason for the global spread of Hyphantria cunea. However, no studies have explored the role of the antioxidant defense system with catalase (CAT) as the core at the molecular level in the adaptation of the H. cunea to host plant secondary metabolites.

View Article and Find Full Text PDF

Improving small-scale cultivation of Spodoptera frugiperda 9 cells by silanizing glassware.

Sci Rep

December 2024

Department of Medical Engineering and Biotechnology, Ernst-Abbe-Hochschule, University of Applied Sciences, Carl-Zeiss-Promenade 2, 07745, Jena, Germany.

Cultivating insect cells in glass vessels can be challenging. Due to uncontrolled cell adhesion and associated cell loss as well as clumping, the replication of experiments is put at risk. A cost-effective solution to improve and stabilize cultivation may be to silanize glass vessels, making them more hydrophobic and chemically inert.

View Article and Find Full Text PDF

The Pb tolerance initiated by LdZIP8 in Lymantria dispar larvae: An effective defense against heavy metal stress.

J Hazard Mater

December 2024

School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China. Electronic address:

Pb is a prevalent heavy metal contaminant in the habitats of herbivorous insects. This study investigated the tolerance level of Lymantria dispar larvae to Pb and its corresponding mechanism focusing on the role of ZIP genes. The detrimental impacts of Pb on larval growth and survival exhibited a dose-dependent relationship, with a survival rate of 48 % even at the extreme concentration of 3424 mg/kg.

View Article and Find Full Text PDF

Scorpion insect neurotoxin LqhIT2 is a promising oral biopesticide: high-level preparation in Pichia pastoris and bioactivity assays.

Pest Manag Sci

December 2024

Postdoctoral Mobile Station of Biology, Genetic Engineering Research Center, College of Life Sciences, Chongqing University, Chongqing, China.

Background: Discovering insecticidal proteins with high activity and strict insect specificity and applying them to the biological control of insect pests is of great significance. Oral LqhIT2 has insecticidal activity, which most other insecticidal neurotoxin proteins do not have, but the large-scale preparation of the toxin is difficult and one of the obstacles to determining its anti-insect potential for biological control.

Results: In this study, the expression level of recombinant LqhIT2 (rLqhIT2) in Pichia pastoris was as high as 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!