Deletion of IRC19 Causes Defects in DNA Double-Strand Break Repair Pathways in Saccharomyces cerevisiae.

J Microbiol

Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea.

Published: September 2024

DNA double-strand break (DSB) repair is a fundamental cellular process crucial for maintaining genome stability, with homologous recombination and non-homologous end joining as the primary mechanisms, and various alternative pathways such as single-strand annealing (SSA) and microhomology-mediated end joining also playing significant roles under specific conditions. IRC genes were previously identified as part of a group of genes associated with increased levels of Rad52 foci in Saccharomyces cerevisiae. In this study, we investigated the effects of IRC gene mutations on DSB repair, focusing on uncharacterized IRC10, 19, 21, 22, 23, and 24. Gene conversion (GC) assay revealed that irc10Δ, 22Δ, 23Δ, and 24Δ mutants displayed modest increases in GC frequencies, while irc19Δ and irc21Δ mutants exhibited significant reductions. Further investigation revealed that deletion mutations in URA3 were not generated in irc19Δ mutant cells following HO-induced DSBs. Additionally, irc19Δ significantly reduced frequency of SSA, and a synergistic interaction between irc19Δ and rad52Δ was observed in DSB repair via SSA. Assays to determine the choice of DSB repair pathways indicated that Irc19 is necessary for generating both GC and deletion products. Overall, these results suggest a potential role of Irc19 in DSB repair pathways, particularly in end resection process.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12275-024-00152-xDOI Listing

Publication Analysis

Top Keywords

dsb repair
20
repair pathways
12
dna double-strand
8
double-strand break
8
saccharomyces cerevisiae
8
repair
6
dsb
5
deletion irc19
4
irc19 defects
4
defects dna
4

Similar Publications

Huntington's Disease (HD), a progressive neurodegenerative disorder with no disease-modifying therapies, is caused by a CAG repeat expansion in the HD gene encoding polyglutamine-expanded huntingtin (HTT) protein. Mechanisms of HD cellular pathogenesis and cellular functions of the normal and mutant HTT proteins are still not completely understood. HTT protein has numerous interaction partners, and it likely provides a scaffold for assembly of multiprotein complexes many of which may be altered in HD.

View Article and Find Full Text PDF

Robust proteome profiling of cysteine-reactive fragments using label-free chemoproteomics.

Nat Commun

January 2025

Crick-GSK Biomedical LinkLabs, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, UK.

Identifying pharmacological probes for human proteins represents a key opportunity to accelerate the discovery of new therapeutics. High-content screening approaches to expand the ligandable proteome offer the potential to expedite the discovery of novel chemical probes to study protein function. Screening libraries of reactive fragments by chemoproteomics offers a compelling approach to ligand discovery, however, optimising sample throughput, proteomic depth, and data reproducibility remains a key challenge.

View Article and Find Full Text PDF

It is thought that cells surviving ionizing radiation exposure repair DNA double-strand breaks (DSBs) and restore their genomes. However, the recent biochemical and genetic characterization of DSB repair pathways reveals that only homologous recombination (HR) can function in an error-free manner and that the non-homologous end joining (NHEJ) pathways canonical NHEJ (c-NHEJ), alternative end joining (alt-EJ), and single-strand annealing (SSA) are error-prone, and potentially leave behind genomic scars and altered genomes. The strong cell cycle restriction of HR to S/G2 phases and the unparalleled efficiency of c-NHEJ throughout the cell cycle, raise the intriguing question as to how far a surviving cell "reaches" after repairing the genome back to its pre-irradiation state.

View Article and Find Full Text PDF

Regulation of pathway choice in DNA repair after double-strand breaks.

Curr Opin Pharmacol

December 2024

Biotechnology Research and Innovation Council - National Institute of Immunology (BRIC-NII), Aruna Asaf Ali Marg, New Delhi 110067, India; Biotechnology Research and Innovation Council - National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani 741251, India. Electronic address:

DNA damage signaling is a highly coordinated cellular process which is required for the removal of DNA lesions. Amongst the different types of DNA damage, double-strand breaks (DSBs) are the most harmful type of lesion that attenuates cellular proliferation. DSBs are repaired by two major pathways-homologous recombination (HR), and non-homologous end-joining (NHEJ) and in some cases by microhomology-mediated end-joining (MMEJ).

View Article and Find Full Text PDF

Prediction of key biological processes from intercellular DNA damage differences through model-based fitting.

iScience

December 2024

Division of Molecular Oncological Pharmacy, Faculty of Pharmacy, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo 105-8512, Japan.

DNA double-strand breaks (DSBs) occurring within the genomic DNA of mammalian cells significantly impact cell survival, depending upon their repair capacity. This study presents a mathematical model to fit fibroblast survival rates with a sequence-specific DSB burden induced by the restriction enzyme AsiSI. When cells had a sporadic DSB burden under mixed culture, cell growth showed a good fit to the Lotka-Volterra competitive equation, predicting the presence of modifying factors acting as competitive cell-to-cell interactions compared to monocultures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!