A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fluid-responsive tunable metasurfaces for high-fidelity optical wireless communication. | LitMetric

Optical wireless communication (OWC), with its blazing data transfer speed and unparalleled security, is a futuristic technology for wireless connectivity. Despite the significant advancements in OWC, the realization of tunable devices for on-demand and versatile connectivity still needs to be explored. This presents a considerable limitation in utilizing adaptive technologies to improve signal directivity and optimize data transfer. This study proposes a unique platform that utilizes tunable, fluid-responsive multifunctional metasurfaces offering dynamic and unprecedented control over electromagnetic wave manipulation to enhance the performance of OWC networks. We have achieved real-time, on-demand beam steering with vary-focusing capability by integrating the fabricated metasurfaces with different isotropic fluids. Furthermore, the designed metasurfaces are capable of polarization-based switching of the diffracted light beams to enhance overall productivity. Our research has showcased the potential of fluid-responsive tunable metasurfaces in revolutionizing OWC networks by significantly improving transmission reliability and signal quality through real-time adjustments. The proposed methodology is verified by designing and fabricating an all-dielectric metasurface measuring 500 μm × 500 μm and experimentally investigating its fluid-responsive vary-focal capability. By incorporating fluid-responsive properties into spin-decoupled metasurfaces, we aim to develop advanced high-tech optical devices and systems to simplify beam-steering and improve performance, adaptability, and functionality, making the devices suitable for various practical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4mh00592aDOI Listing

Publication Analysis

Top Keywords

fluid-responsive tunable
8
tunable metasurfaces
8
optical wireless
8
wireless communication
8
data transfer
8
owc networks
8
500 μm
8
metasurfaces
6
fluid-responsive
5
metasurfaces high-fidelity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!