Our research path toward the restoration of natural sensations in hand prostheses.

Artif Organs

Bertarelli Foundation Chair in Translational Neuroengineering, Neuro-X Institute, School of Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland.

Published: September 2024

The human hand, with its intricate sensory capabilities, plays a pivotal role in our daily interactions with the world. This remarkable organ possesses a wide range of natural sensors that enrich our experiences, enabling us to perceive touch, position, and temperature. These natural sensors work in concert to provide us with a rich sensory experience, enabling us to distinguish between various textures, gauge the force of our grip, determine the position of our fingers without needing to see them, perceive the temperature of objects we come into contact with or detect if a cloth is wet or dry. This complex sensory system is fundamental to our ability to manipulate objects, explore our surroundings, and interact with the world and people around us. In this article, we summarize the research performed in our laboratories over the years and our findings to restore both touch, position, and temperature modalities. The combination of intraneural stimulation, sensory substitution, and wearable technology opens new possibilities for enhancing sensory feedback in prosthetic hands, promising improved functionality and a closer approximation to natural sensory experiences for individuals with limb differences.

Download full-text PDF

Source
http://dx.doi.org/10.1111/aor.14823DOI Listing

Publication Analysis

Top Keywords

natural sensors
8
touch position
8
position temperature
8
sensory
6
path restoration
4
natural
4
restoration natural
4
natural sensations
4
sensations hand
4
hand prostheses
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!