Septins are a family of membrane-associated cytoskeletal guanine-nucleotide binding proteins that play crucial roles in various cellular processes, such as cell division, phagocytosis, and organelle fission. Despite their importance, the evolutionary origins and ancestral function of septins remain unclear. In opisthokonts, septins form five distinct groups of orthologs, with subunits from multiple groups assembling into heteropolymers, thus supporting their diverse molecular functions. Recent studies have revealed that septins are also conserved in algae and protists, indicating an ancient origin from the last eukaryotic common ancestor. However, the phylogenetic relationships among septins across eukaryotes remained unclear. Here, we expanded the list of non-opisthokont septins, including previously unrecognized septins from glaucophyte algae. Constructing a rooted phylogenetic tree of 254 total septins, we observed a bifurcation between the major non-opisthokont and opisthokont septin clades. Within the non-opisthokont septins, we identified three major subclades: Group 6 representing chlorophyte green algae (6A mostly for species with single septins, 6B for species with multiple septins), Group 7 representing algae in chlorophytes, heterokonts, haptophytes, chrysophytes, and rhodophytes, and Group 8 representing ciliates. Glaucophyte and some ciliate septins formed orphan lineages in-between all other septins and the outgroup. Combining ancestral-sequence reconstruction and AlphaFold predictions, we tracked the structural evolution of septins across eukaryotes. In the GTPase domain, we identified a conserved GAP-like arginine finger within the G-interface of at least one septin in most algal and ciliate species. This residue is required for homodimerization of the single septin, and its loss coincided with septin duplication events in various lineages. The loss of the arginine finger is often accompanied by the emergence of the α0 helix, a known NC-interface interaction motif, potentially signifying the diversification of septin-septin interaction mechanisms from homo-dimerization to hetero-oligomerization. Lastly, we found amphipathic helices in all septin groups, suggesting that membrane binding is an ancestral trait. Coiled-coil domains were also broadly distributed, while transmembrane domains were found in some septins in Group 6A and 7. In summary, this study advances our understanding of septin distribution and phylogenetic groupings, shedding light on their ancestral features, potential function, and early evolution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11238149 | PMC |
http://dx.doi.org/10.3389/fcell.2024.1406966 | DOI Listing |
Clin Auton Res
January 2025
Department of Neurology, Mayo Clinic, Rochester, MN, USA.
J Neurol
January 2025
Department of Neurology, Mayo Clinic, Rochester, MN, USA.
Objectives: To report myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) epidemiology in two American regions using 2023 diagnostic criteria.
Patients And Methods: We compared age- and sex-adjusted incidence and prevalence of MOGAD per 2023 diagnostic criteria in Olmsted County (Minnesota [USA]) and Martinique (Caribbean [FR]) (01/01/2003-12/31/2018, prevalence day) using Poisson regression. Archived sera in 68-85% were available for MOG-IgG testing by live cell-based assay at Mayo Clinic.
Prz Gastroenterol
December 2024
Department of Medical Science, Islamic Azad University, Chalus Branch, Chalous, Iran.
Introduction: Colorectal cancer (CRC) is a rising threat, necessitating accurate early diagnosis.
Aim: This meta-analysis scrutinised methylated septin 9 (SEPT9) and carcinoembryonic antigen (CEA) in CRC.
Methods: From January 2012 to December 2022, databases including PubMed and Google Scholar were explored for English publications.
Open Biol
January 2025
Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO 80045, USA.
Protein-based nanomachines drive every cellular process. An explosion of high-resolution structures of multiprotein complexes has improved our understanding of what these machines look like and how they work, but we still know relatively little about how they assemble in living cells. For example, it has only recently been appreciated that many complexes assemble co-translationally, with at least one subunit still undergoing active translation while already interacting with other subunits.
View Article and Find Full Text PDFCurr Biol
January 2025
Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA. Electronic address:
In vivo functions of the septin and actin cytoskeletons are closely intertwined, yet the mechanisms underlying septin-actin crosstalk have remained poorly understood. Here, we show that the yeast-bud-neck-associated Fes/CIP4 homology Bar-amphiphysin-Rvs (F-BAR) protein suppressor of yeast profilin 1 (Syp1)/FCHo uses its intrinsically disordered region (IDR) to directly bind and bundle filamentous actin (F-actin) and to physically link septins and F-actin. Interestingly, the only other F-BAR protein found at the neck during bud development, Hof1, has related activities and also potently inhibits the bud-neck-associated formin Bnr1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!