Empowering sickle cell disease care: the rise of in Sub-Saharan Africa for enhanced patient's perspectives.

Front Rehabil Sci

REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Hasselt, Belgium.

Published: June 2024

Sickle-cell Disease (SCD) is a major public health problem in Africa, and there are significant obstacles to its comprehensive management, particularly in terms of access to appropriate healthcare. This calls for inventive approaches to improve patients' prospects. Among the major challenges to be met are the primary and secondary prevention of certain serious complications associated with the disease, such as neurocognitive, motor and respiratory functional disorders. This perspective argues for the rapid creation of specific, cost-effective, technology-supported rehabilitation centres to advance SCD care, identify patients at high risk of stroke and implement tailored rehabilitation strategies. The in Lubumbashi illustrates this shift in thinking by using cutting-edge technologies such as virtual reality (VR), serious games and mobile health to create a comprehensive and easily accessible rehabilitation framework. Diagnostic tools used to perform functional assessment can be used to identify cognitive, balance and walking deficits respectively. Transcranial Doppler enables early detection of sickle cell cerebral vasculopathy, making it possible to provide early and appropriate treatment. VR technology and serious games enable effective rehabilitation and cognitive stimulation, which is particularly advantageous for remote or community-based rehabilitation. In the context of African countries where there is a glaring disparity in access to digital resources, the serves as a tangible example, demonstrating the flexibility and accessibility of technology-assisted rehabilitation. This perspective is an urgent call to governments, non-governmental organisations and the international community to allocate resources to the replication and expansion of similar facilities across Africa.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11236801PMC
http://dx.doi.org/10.3389/fresc.2024.1388855DOI Listing

Publication Analysis

Top Keywords

sickle cell
8
serious games
8
rehabilitation
6
empowering sickle
4
cell disease
4
disease care
4
care rise
4
rise sub-saharan
4
sub-saharan africa
4
africa enhanced
4

Similar Publications

Despite progress in healthcare services for individuals living with sickle cell disease (SCD) in Africa, substantial gaps remain in advanced treatments for SCD. To help address this burden, Tanzania has established one of the largest single-centre SCD programmes in the world and developed an advanced therapy programme for SCD focused on patient engagement and advocacy, clinical activities involving exchange blood transfusion (ExBT) and haematopoietic stem cell transplant (HSCT), gene therapy (GT) preparedness, and enabling partnerships. This report describes the programme's genesis, structure and progress achieved.

View Article and Find Full Text PDF

An efficient heuristic for geometric analysis of cell deformations.

Comput Biol Med

January 2025

SCOPIA Research Group, University of the Balearic Islands, Dpt. of Mathematics and Computer Science, Crta. Valldemossa, Km 7.5, Palma, E-07122, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, E-07122, Spain; Laboratory for Artificial Intelligence Applications at UIB (LAIA@UIB), Palma, E-07122, Spain; Artificial Intelligence Research Institute of the Balearic Islands (IAIB), Palma, E-07122, Spain. Electronic address:

Sickle cell disease causes erythrocytes to become sickle-shaped, affecting their movement in the bloodstream and reducing oxygen delivery. It has a high global prevalence and places a significant burden on healthcare systems, especially in resource-limited regions. Automated classification of sickle cells in blood images is crucial, allowing the specialist to reduce the effort required and avoid errors when quantifying the deformed cells and assessing the severity of a crisis.

View Article and Find Full Text PDF

Babesiosis in sickle cell disease (SCD) is marked by severe anemia but the underlying red blood cell (RBC) rheological parameters remain largely undefined. Here, we describe altered RBC deformability from both primary (host RBC sickle hemoglobin mediated) and secondary changes (Babesia parasite infection mediated) to the RBC membrane using wild type AA, sickle trait AS and sickle SS RBCs. Our ektacytometry (LORRCA) analysis demonstrates that the changes in the host RBC bio-mechanical properties, pre- and post- Babesia infection, reside on a spectrum of severity, with wild type infected AA cells, despite showing a significant reduction of deformability under both shear and osmolarity gradients, exhibiting only a mild phenotype; compared to infected AS RBCs which show median changes in deformability and infected SS RBCs which exhibit the most dramatic impact of infection on cellular rheology, including an increase in Point of Sickling values.

View Article and Find Full Text PDF

Objective: To observe the fetomaternal outcome of therapeutic versus prophylactic blood transfusions in patients with sickle cell disease (SCD) during pregnancy.

Method: This single-center retrospective observational study was conducted on consecutive pregnant women with SCD between January 2018 and December 2020. All the pregnant women with SCD were included in this study.

View Article and Find Full Text PDF

Non-myeloablative hematopoietic cell transplantation (HCT) is a curative option for individuals with sickle cell disease (SCD). Our traditional goal with this approach has been to achieve a state of mixed donor/recipient chimerism. Recently, we reported an increased risk of hematologic malignancies (HMs) in adults with SCD following graft failure or mixed chimerism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!